

Радиационный монитор РМГ-АТ2000

Радиационный монитор предназначен для измерения по маршруту ведения аэрогамма-съемки и выдачи в реальном масштабе времени в центральный бортовой вычислитель беспилотного летательного аппарата данных о мощности дозы гамма-излучения на высоте полета и радиационной обстановке на земле и их передачи в наземный пункт обработки информации для оперативной оценки и своевременного принятия защитных мер организационного и технического характера.

Области применения

- Поиск утерянных источников гамма-излучения
- Радиоэкологический мониторинг территорий, прилегающих к объектам атомной энергетики
- Контроль радиационной обстановки в зоне промышленных предприятий по переработке и хранению радиоактивных отходов
- Контроль радиационной обстановки, сложившейся в результате техногенных аварий на радиационно-опасных объектах
- Оценка радиационной обстановки, сложившейся после радиоактивных выпадений при ядерных инцидентах

ПРИБОРЫ И ТЕХНОЛОГИИ ДЛЯ ЯДЕРНЫХ ИЗМЕРЕНИЙ И РАДИАЦИОННОГО КОНТРОЛЯ

Принцип действия

Радиационный монитор состоит из двух блоков детектирования гамма-излучения БДКГ-04 (широкодиапазонный) и БДКГ-11 (высокочувствительный), и блока сопряжения БС-10. Блок сопряжения БС-10 предназначен для сбора и обработки данных с блоков детектирования БДКГ-04 и БДКГ-11, расчета мощности дозы на уровне 1м от поверхности земли, обмена информации с аппаратурой потребителя.

Блоки детектирования и блок сопряжения устанавливаются на общем основании и закрываются обтекателем.

С центрального бортового вычислителя на радиационный монитор поступают значения высоты полета, температуры и давления на высоте полета, времени и координат. Измеренные на высоте ведения разведки значения мощности дозы и ее значения, пересчитанные аппаратурой на уровень 1 м от поверхности земли вместе с данными о времени и координатах точек измерения возвращаются в центральный бортовой вычислитель для записи в бортовое запоминающее устройство и передачи на наземный пункт обработки.

В зависимости от размеров источника излучения на местности (размеров пятна), радиационный монитор может работать в одном из четырех режимов:

- 1) точечный источник;
- 2) малое пятно (R < 20 м);
- 3) среднее пятно (20 м < R < 500 м)
- 4) большое пятно (R > 500 м)

Выбор конкретного режима работы осуществляется оператором, как во время предполетной подготовки, так и во время полета. В остальном работа радиационного монитора полностью автоматизирована и автономна.

Основные тактико-технические характеристики

Высота ведения разведки	от 10 до 200 м
Время установления рабочего режима	менее 2 минут
Время непрерывной работы	ограничено временем полета
Диапазон путевых скоростей	от 0 до 100 км/ч

Основные технические характеристики

Диапазон измерения мощности амбиентного эквивалента	30 н3в/ч – 5 3в/ч
дозы гамма-излучения в точке размещения Пределы допускаемой основной относительной погрешности	не более ±20 %
измерения мощности дозы гамма-излучения	
Диапазон приведенных значений измерения мощности дозы	1 мк3в/ч — 50 3в/ч
гамма-излучения к уровню 1 м от поверхности земли	
Диапазон энергий регистрируемого гамма-излучения на	60 кэВ – 3 МэВ
высоте полета	
Энергетическая зависимость чувствительности	не более ±25 %
Нестабильность показаний за время непрерывной работы	не более ±5 %
Интерфейс приема/передачи данных	RS485 / RS422
Питание	от источника постоянного тока от 9 до 32 В
Диапазон рабочих температур	от -35 °C до +50 °C
Относительная влажность воздуха при температуре 35 °C	до 98 %
и более низких без конденсации влаги	
Габаритные размеры, масса	520x250x210 мм, 4,5 кг

