УТВЕРЖДАЮ

Директор УП «ATOMTEX»

В.А. Кожемякин 2015 **УТВЕРЖДАЮ**

Руководитель ГЦИ СИ ФГУП «ВПИИМ им. Д.И. Менделеева Н.И. Ханов 2015

УСТАНОВКА ПОВЕРОЧНАЯ НЕЙТРОННОГО ИЗЛУЧЕНИЯ УПН-АТ140

Методика поверки ТИАЯ.412118.031 МП

np.63548-16

Начальник отдела радиационной метрологии УП «ATOMTEX»

В.Д. Гузов

« » 2015

Руководитель отдела измерений ионизирующих излучений ГЦИ СИ ФГУП

«ВПЛИМ им. Д.И. Менделеева

_С.Г. Трофимчук

2015

Содержание

Вволная часть	3
Операции поверки	3
Средства поверки	4
Требования безопасности	
Условия поверки и подготовка к ней	5
3 Определение метрологических характеристик	9
	Условия поверки и подготовка к ней

1 Вводная часть

- 1.1 Настоящая методика поверки распространяется на установку поверочную нейтронного излучения УПН-АТ140, устанавливает методику ее первичной и периодической поверок и соответствует ГОСТ 8.521-84 «Государственная система обеспечения единства измерений. Установки поверочные нейтронного излучения. Методика поверки».
- 1.2 Установка поверочная нейтронного излучения УПН-АТ140 (далее установка) предназначена для воспроизведения и передачи единиц плотности потока нейтронов, мощности амбиентного эквивалента дозы $\dot{H}^*(10)$ и индивидуального эквивалента дозы $\dot{H}_p^*(10)$ нейтронного излучения при поверке, калибровке, градуировке и испытаниях радиометров и дозиметров нейтронного излучения.
- **1.3** Первичной поверке подлежат установки до ввода в эксплуатацию, а также после ремонта или устранения неисправности, которая могла бы привести к изменению метрологических характеристик установки.
 - 1.4 Периодической поверке подлежит установка, находящаяся в эксплуатации.
 - 1.5 Интервал между поверками 2 года.

2 Операции поверки

2.1 При проведении поверки должны быть выполнены операции, указанные в таблице 2.1.

Таблица 2.1

	Номер пункта	Проведение	операции при
Наименование операции	методики	первичной	периодической
	поверки	поверке	поверке
1 Внешний осмотр	7.1	Да	Да
2 Опробование	7.2	Да	Да
3 Определение плотности потока	7.3.1	Да	Да
нейтронов	7.5.1	да	да
4 Определение плотности потока	7.3.2	Да	Да
тепловых (подкадмиевых) нейтронов	7.5.2	Ди	. ~~
5 Определение плотности потока	7.3.3	Да	Да
нейтронов в «открытой» геометрии	7.5.5	Α"	<u> </u>
6 Определение мощности			
амбиентного эквивалента дозы и	7.3.4	Да	Да
мощности индивидуального эквивалента	,,,,,,	~	
дозы нейтронного излучения			
7 Определение мощности			
амбиентного эквивалента дозы и			
мощности индивидуального эквивалента	7.3.5	Да	Да
дозы нейтронного излучения при			
измерениях в "открытой" геометрии			
8 Оформление результатов поверки	8	Да	Да

3 Средства поверки

3.1 При проведении поверки должны применяться эталоны, средства измерений, приведенные в таблице 3.1.

Таблица 3.1

Номер	Наименование и тип	Метрологические и основные технические
пункта	эталонов и	характеристики
методики	вспомогательных средств	
поверки	поверки	
7.3.1	Эталон плотности потока	Диапазон $10 - 10^4 \mathrm{c}^{-1} \cdot \mathrm{cm}^{-2}$
7.3.2	нейтронов в ранге не ниже	Суммарное СКО $S_{\Sigma_0} = (2-3) \cdot 10^{-2}$
7.3.3	вторичного в	
7.3.5	соответствии с ПС ГОСТ	
	8.031-82	
7.3.4	Эталон мощности	Диапазон $10 - 1 \cdot 10^4$ мкЗв ч ⁻¹
	эквивалента дозы	Суммарное СКО $S_{\Sigma_0} = (2-3) \cdot 10^{-2}$
	нейтронного излучения в	
	ранге не ниже вторичного	
	в соответствии с ПС	
	ΓΟCT 8.803-2012	
7.3.1	Компаратор радиометр-	Диапазон измерений плотности потока нейтронов
7.3.3	дозиметр нейтронов	$1 - 1 \cdot 10^4 \mathrm{c}^{-1} \mathrm{cm}^{-2}$
7.3.4		Диапазон измерений мощности эквивалента дозы
7.3.5		нейтронного излучения $1 - 1 \cdot 10^4$ мкЗв ч ⁻¹
		СКО результата измерений 1·10-2
7.3.2	Компаратор радиометр тепловых нейтронов	Диапазон измерений плотности потока нейтронов $1 - 1 \cdot 10^4 \text{c}^{-1} \text{см}^{-2}$
	•	СКО результата измерений 1·10-2
6.1	Термометр лабораторный	Диапазон измерений температуры от 0 °C до 50 °C.
		Цена деления 0,1 °C.
		Погрешность измерения не более ±0,1 °C
6.1	Психрометр	Измерение относительной влажности воздуха от
	аспирационный	10 % до 100 %.
		Погрешность измерения не более ±2 %
6.1	Барометр-анероид	Измерение атмосферного давления от 80 до 107 кПа.
		Погрешность измерения не более ±0,2 кПа
Петтельна	Dec anamana vancana	получи и имети пейструконне клейма и (или)

Примечание — Все средства измерений должны иметь действующие клейма и (или) свидетельства о поверке. Допускается применять другие средства измерений с метрологическими характеристиками не хуже указанных. Для расчета контрольной суммы программного обеспечения допускается применять стандартные средства, например, Total Commander, Double Commander.

4 Требования к квалификации поверителей

- **4.1** К проведению поверки и (или) обработке результатов поверки допускаются лица, аттестованные в качестве государственных поверителей в установленном порядке. Техническое обслуживание и обеспечение работоспособности поверяемой установки выполняет штатный сотрудник из числа персонала организации-пользователя установки.
- **4.2** Для проведения поверки необходимо ознакомиться с руководством по эксплуатации на поверяемую установку и рекомендациями по выполнению измерений основных параметров поля излучения.

5 Требования безопасности

- **5.1** При проведении поверки должны соблюдаться требования безопасности, установленные в:
 - СП 2.6.1.2612-10 «Основные санитарные правила обеспечения радиационной безопасности (ОСПОРБ-99/2010)»;
 - СанПиН 2.6.1.2523-09 «Нормы радиационной безопасности (НРБ-99/2009)»;
 - ПОТ РМ-016-2001 (РД 153-34.0-03.150-00) «Межотраслевые правила по охране труда (правила безопасности) при эксплуатации электроустановок»;
 - РЭ на поверяемую установку;
 - эксплуатационной документации применяемых средств поверки.

6 Условия поверки и подготовка к ней

6.1 Поверку необходимо проводить в следующих условиях:

- температура окружающего воздуха

– относительная влажность воздуха60 (+20; -30) %;

– атмосферное давление101,3 (+5,4; -15,3) кПа.

 (20 ± 5) °C;

- 6.2 При подготовке к поверке необходимо:
 - ознакомиться с РЭ;
 - подготовить установку к поверке в соответствии с разделом 3 РЭ (3.1);
 - подготовить средства измерений в соответствии с технической документацией.

7 Проведение поверки

7.1 Внешний осмотр

- 7.1.1 При проведении внешнего осмотра должно быть установлено:
- наличие РЭ на поверяемую установку;
- соответствие комплектности, поверяемой установки требованиям РЭ в объеме, необходимом для поверки;
 - наличие свидетельства о первичной или предыдущей поверке;
- наличие паспортов на входящие в комплект установки радионуклидные источники нейтронов с указанием действующих сроков службы;
- отсутствие в поле излучения установки посторонних предметов, которые могут влиять на результаты измерений;
- отсутствие повреждений установки, влияющих на ее метрологические характеристики.

7.2 Опробование

- 7.2.1 При опробовании установки проверяют:
- исправность установки в соответствии с эксплуатационной документацией;
- возможность размещения и юстировки поверяемых приборов в поле излучения, их фиксации и необходимых перемещений в поле излучения;
 - работоспособность установки в соответствии с РЭ;
 - подтверждение соответствия программного обеспечения (ПО) установки.
 - **7.2.2** Подтверждение соответствия ПО проводят идентификацией ПО и проверкой обеспечения защиты ПО от несанкционированного доступа во избежание искажения результатов измерений.

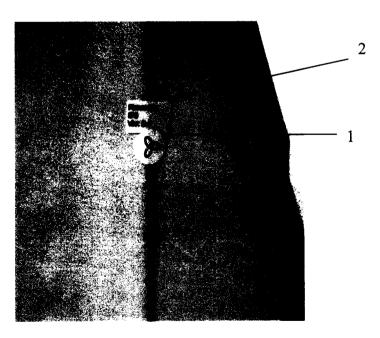
Метрологически значимыми в программном обеспечении УПН-AT140 являются следующие программы:

- программа «UPNControl», установленная на внешнем компьютере, обеспечивающая связь с установкой, ввод и редактирование данных о средствах измерений (СИ) радиационного контроля, эталонных СИ, эталонных источниках излучения (ИИ), их поверках, сценариях поверок и сохранение их в базе данных, пересчет метрологически значимых величин и сохранение результатов измерений в базе данных;
- программа контроллера ДУО (контроллера блока управления ДУО-АТ140), обеспечивающая управление процессом перемещения (позиционирования) облучателя и обработку сигналов ДУО;
- программа контроллера КС (контроллера блока управления КС-АТ140), обеспечивающая управление и позиционирование подвижной платформы по заданным координатам, управление опорным источником и обработку сигналов КС;
- программа панели оператора ДУО (панели оператора пульта управления ДУО-АТ140), обеспечивающая отображение состояния облучателя и инициализацию процесса перемещения источника путем передачи команд и обмена данными с контроллером ДУО.
- программа панели оператора КС (панели оператора пульта управления КС-АТ140), обеспечивающая отображение текущего состояния КС, передачу команд позиционирования контроллеру КС.

Определение цифровых идентификаторов исполняемых кодов внешнего ПО проводится вычислением контрольных сумм по методу MD5 с помощью внешней программы стороннего разработчика (например, стандартными средствами Total Commander).

Результаты поверки считают удовлетворительными, если наименования, номера версий (идентификационные номера) и контрольные суммы внешнего ПО соответствуют указанным в таблице 7.1 и в разделе РЭ «Особые отметки».

Идентификационные данные программного обеспечения приведены в таблице 7.1.

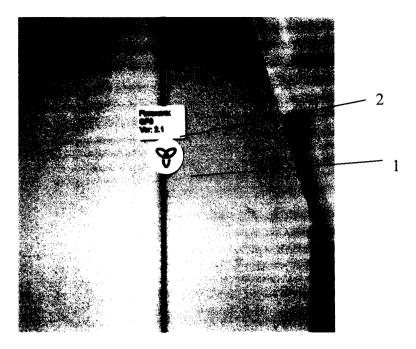

Таблица 7.1

Идентификационные	Значения								
данные (признаки)	Встроенное ПО Вне I								
Идентификационное наименование ПО	IPLC	IPLC CPLC IPO CPO							
Номер версии (идентификационный номер) ПО	2.11)	2.11) 2.11) 2.11) 2.11)							
Цифровой идентификатор ПО (по MD5)	Не определен ²⁾	е определен ²⁾ Не определен ²⁾ Не определен ²⁾ Не определен ²⁾							

¹⁾ Номер версии программного обеспечения не ниже указанного в таблице.

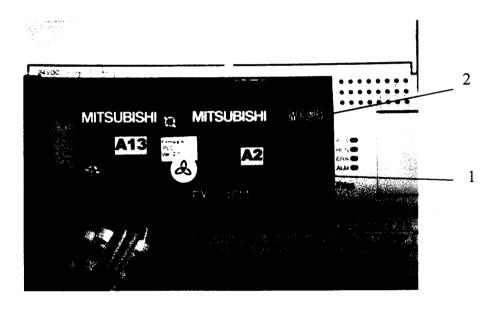
Программы контроллера ДУО, контроллера КС, панели оператора ДУО, панели оператора КС защищены от несанкционированного изменения паролем и пломбой на корпусах контроллеров и пультов управления (см. рисунки 1-4).

Под пломбой размещается шильдик с наименованием программы после слова «Firmware» и номером версии программы после слова «Ver».



1 – пломба; 2 – шильдик.

Рисунок 1 - Пломба на пульте управления облучателя


 $^{^{2)}}$ Встроенное ПО устанавливается на стадии производства. Доступа к цифровому идентификатору встроенного ПО нет.

³⁾ Контрольная сумма относится к текущей версии программного обеспечения (1.0.0.0).

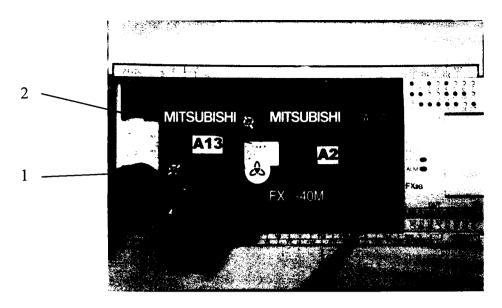

1 – пломба; 2 –шильдик.

Рисунок 2 – Пломба на пульте управления стенда

1 – пломба; 2 –шильдик.

Рисунок 3 – Пломба на корпусе контроллера КС

1 – пломба; 2 –шильдик.

Рисунок 4 – Пломба на корпусе контроллера ДУО

Результаты поверки считают удовлетворительными, если целостность пломбы не нарушена, а идентификационные наименования и номера версий (идентификационные номера) встроенного ПО соответствуют указанным в таблице Ошибка! Источник ссылки не найден. и (или) в разделе РЭ «Особые отметки». При повреждённой пломбе поверка прекращается и выписывается извещение о непригодности.

7.3 Определение метрологических характеристик

7.3.1 Определение плотности потока нейтронов

- **7.3.1.1** Значение плотности потока нейтронов определяют методом сличения значения плотности потока нейтронного поля поверяемой установки с конкретным источником, установленным в коллиматор, с плотностью потока в поле эталона более высокого разряда.
- 7.3.1.2 Блок детектирования радиометра-компаратора размещают на рабочем столе подвижной платформы поверяемой установки, обеспечивающем совпадение оси симметрии блока детектирования с центральной осью пучка нейтронов и оцифровку координаты расстояний R относительно центра радионуклидного источника
- **7.3.1.3** Устанавливают расстояние R_i (не менее 0,6 м) между центрами радионуклидного источника и радиометра-компаратора.
- **7.3.1.4** Измеряют скорость счета радиометра-компаратора $N(R_I)$, с⁻¹. Проводят не менее пяти измерений скорости счета. Время экспозиции выбирают таким образом, чтобы суммарное число отсчетов было не менее $5\cdot 10^5$ импульсов. Значение $N(R_I)$ записывают в таблице **А.2** протокола поверки, форма которого приведена в приложении Γ .
- **7.3.1.5** Вычисляют среднее арифметическое значение результатов измерений для расстояния $R = R_1$ по формуле

$$\overline{N} = \frac{1}{n} \sum N_i \,, \tag{7.1}$$

где N_i – результат і-го измерения;

 \overline{N} – среднее арифметическое значение результатов измерений;

n — число измерений.

Результаты заносят в таблицу А.2 протокола поверки.

- **7.3.1.6** Увеличивая значение R на 0,1 м, повторяют процедуру 7.3.1.4 7.3.1.5 до достижения значения R = 3,0 м.
- 7.3.1.7 Для каждого значения R вычисляют значения скорости счета $N^*(R)$, с⁻¹, по формуле

$$N^*(R) = \frac{\overline{N}}{1 - \overline{N}\tau} \cdot e^{\mu R}, \qquad (7.2)$$

где τ – «мертвое» время радиометра компаратора, с,

 μ – коэффициент рассеяния нейтронов воздухом, м⁻¹.

Результаты заносят в таблицу А.2 протокола поверки.

Вычисляют величину $\frac{1}{\sqrt{N^*(R)}}$.

Результаты заносят в таблицу А.2 протокола поверки.

- 7.3.1.8 Строят график $f(R) = \frac{1}{\sqrt{N^*(R)}}$, и по начальному линейному участку проводят прямую линию. Методом наименьших квадратов определяют параметры прямой линии $\frac{1}{\sqrt{N^*(R)}} = aR + b$ и вычисляют значение $\Delta R_I = -\frac{b}{a}$.
- **7.3.1.9** Для каждого значения R вычисляют значение $\frac{1}{(R-\Delta R_I)^2}$, результаты заносят в таблицу **А.2** протокола поверки.
- **7.3.1.10** Строят график зависимости $N^*(R) = f((R \Delta R_I)^{-2})$, по начальному линейному участку проводят прямую линию и методом наименьших квадратов определяют параметры прямой $N^*(R) = a(R \Delta R_I)^{-2} + b$.

Физический смысл константы b — вклад рассеянных нейтронов в суммарную скорость счета, $b = N_{p1}$.

Для каждого значения R вычисляют значение характеристической константы системы «источник-детектор» по формуле

$$A = (N^{*}(R) - N_{nl}) \cdot (R - \Delta R_{l})^{2}. \tag{7.3}$$

В случае если A = const(R) в пределах ± 1 %, вычисляют среднее значение характеристической константы \overline{A} по формуле

$$\overline{A} = \frac{1}{k} \sum A_j \,. \tag{7.4}$$

Результат заносят в таблицу А.2 протокола поверки.

7.3.1.11 В случае если $A \neq const(R)$, строят график зависимости

$$\frac{1}{\sqrt{N^*(R) - N_{pl}}} = f(R) \tag{7.5}$$

и в соответствии с 7.3.1.8 – 7.3.1.11 вычисляют значения ΔR_2 , N_{p2} и \overline{A} .

7.3.1.12 Вычисляют СКО результата измерений, %, по формуле

$$S = \frac{100}{\overline{A}} \sqrt{\frac{\sum_{j=1}^{k} (\overline{A} - A_j)^2}{k(k-1)}}.$$
 (7.6)

7.3.1.13 Вычисляют значение плотности потока нейтронов в поле поверяемой установки на расстоянии 1 м от центра источника по формуле

$$\varphi_p(1_M) = \varphi_3(1_M) \frac{A_p}{A_2} \cdot \frac{(1 - \Delta R_p)^2}{(1 - \Delta R_2)^2},$$
 (7.7)

где φ_3 , A_3 и ΔR_3 — значения относятся к эталону более высокого ранга, по которому проводится сличение;

 $\varphi_{p}\,,\;A_{p}\,$ и $\varDelta R_{p}\,$ — значения для поверяемой установки.

7.3.1.14 Рассчитывают значения плотности потока нейтронов в прямом пучке (без учёта рассеянного излучения) на расстоянии R в диапазоне расстояний от 0,6 до 3,0 м для поверяемой установки $\varphi_p(R)$ по формуле

$$\varphi_p(R) = \varphi_p(1_M) \frac{(1 - \Delta R)^2}{(R - \Delta R)^2} e^{-\mu(R-1)}$$
 (7.8)

- **7.3.1.15** Результаты измерений плотности потока нейтронов $\varphi_p(R)$ принимают за действительные значения плотности потока нейтронов в поле поверяемой установки и записывают в таблицу **А.6** протокола поверки.
- **7.3.1.16** Выполняют последовательность операций 7.3.1.3 7.3.1.12 для всех типов радиометров, проходящих поверку в поле поверяемой установки.
- 7.3.1.17 Для каждого типа радиометров вычисляют значение коэффициента B(R) для каждого значения R по формуле $B(R) = \frac{N(R) N_p}{N(R)}$. Результат записывают в таблицу **А.3** протокола поверки. B(R) коэффициент, учитывающий вклад рассеянного нейтронного излучения в показания радиометра (определяется при поверке эталонной установки).

7.3.1.18 Доверительные границы основной относительной погрешности δ_0 , %, плотности потока нейтронов в поле поверяемой установки с доверительной вероятностью P=0.95 определяют в соответствии с ГОСТ Р 8.736-2011 по формуле

$$\delta_0 = KS_{\Sigma}, \tag{7.9}$$

где S_{Σ} — суммарное СКО результатов измерений, %;

K — коэффициент, зависящий от выбранной доверительной вероятности P и сочетания случайных и систематических погрешностей.

7.3.1.19 Суммарное СКО результатов измерений S_{Σ} вычисляют по формуле

$$S_{\Sigma} = \sqrt{S^2 + S_{\delta}^2 + S_{\vartheta}^2 + S_R^2} , \qquad (7.10)$$

где S – СКО результата измерений, рассчитанное по формуле (7.6), %;

- S_{δ} СКО неисключенной систематической погрешности (НСП) эталона более высокого ранга, по которому проводится поверка, равное половине значения погрешности для доверительной вероятности P=0.95, приведенного в свидетельстве о его поверке, %;
- S_{g} СКО НСП радиометра-компаратора, рассчитанное по формуле

$$S_{g} = \sqrt{\frac{g^2}{3}} , \qquad (7.11)$$

- где 9 максимальное значение невоспроизводимости показаний радиометракомпаратора, %;
 - S_R СКО результата определения расстояния от центра источника до центра детектора дозиметрического прибора ($S_R = \sqrt{\frac{0.2^2}{3}} = 0.14$ % согласно технической документации на установку), %.
- **7.3.1.20** Коэффициент K вычисляют по формуле

$$K = \frac{tS + 1, 1\sqrt{9^2 + 4S_{\delta}^2 + 4S_R^2}}{S + \sqrt{S_{\delta}^2 + S_{\delta}^2 + S_R^2}},$$
(7.12)

где t — коэффициент распределения Стьюдента, соответствующий доверительной вероятности P=0.95 и числу степеней свободы n-1 (числу результатов измерений n).

Результаты поверки считают положительными, если основная относительная погрешность поверяемой установки при доверительной вероятности 0,95 не превышает допустимого предела для рабочих эталонов 1-го и 2-го разрядов по ГОСТ Р 8.031-82.

7.3.2 Определение плотности потока тепловых нейтронов

7.3.2.1 Значение плотности потока нейтронов определяют методом сличения значения плотности потока нейтронного поля поверяемой установки с конкретным источником, установленным в контейнер-замедлитель, с плотностью потока в поле эталона более высокого разряда.

- **7.3.2.2** Блок детектирования радиометра-компаратора размещают на рабочем столе подвижной платформы поверяемой установки, обеспечивающем совпадение оси симметрии блока детектирования с центральной осью пучка нейтронов и оцифровку координаты расстояний R относительно центра радионуклидного источника.
- **7.3.2.3** По шкале градуировочной линейки установки устанавливают расстояние R_t (не менее 0,6 м) между центрами радионуклидного источника и радиометра-компаратора.
- **7.3.2.4** Измеряют скорость счета N_I , с⁻¹. Время экспозиции выбирают таким образом, чтобы суммарное число отсчетов было менее $5\cdot 10^5$ импульсов. Значение N_I записывают в таблицу **А.4** протокола поверки.
- **7.3.2.5** Закрывают кадмиевым экраном толщиной 1 мм источник тепловых нейтронов, по методике 7.3.2.4 получают значение N_{II} , результат заносят в таблицу **А.4** протокола поверки.
- **7.3.2.6** Закрывают кадмиевым экраном толщиной 1 мм детектор, по методике 7.3.2.4 получают значение N_{IV} , результат заносят в таблицу 3 протокола поверки.
- **7.3.2.7** Снимают кадмиевый экран с источника, по методике 7.3.2.4 получают значение N_{m} , результат заносят в таблицу **А.4** протокола поверки.
- **7.3.2.8** Увеличивают расстояние на 0,1 м, повторяют операции по 7.3.2.3 7.3.2.7 до достижения значения R = 3,0 м.
- **7.3.2.9** Для каждого полученного значения N рассчитывают значение N^* по формуле

$$N^* = \frac{N}{I - N \cdot \tau} \,. \tag{7.13}$$

Результаты записывают в таблицу А.4 протокола поверки.

7.3.2.10 Для каждого значения R рассчитывают значение скорости счета, обусловленной тепловыми нейтронами, по формуле

$$N_T = N_I^* - \frac{N_{II}^* \cdot N_{III}^*}{N_{IV}^*}. \tag{7.14}$$

Результаты записывают в таблицу А.4 протокола поверки.

7.3.2.11 Для каждого значения R рассчитывают значение $N_{_T}^{^*} = N_{_T} e^{\mu R}$.

Результаты записывают в таблицу А.4 протокола поверки.

- **7.3.2.12** По методике 7.3.1.7–7.3.1.11 определяют значение A и N_p , результаты записывают в таблицу **А.4** протокола поверки.
 - 7.3.2.13 Вычисляют СКО результата измерений по формуле (7.6).
- **7.3.2.14** Вычисляют значение плотности потока тепловых нейтронов в поле поверяемой установки на расстоянии 1 м от центра источника по формуле (7.7).
- **7.3.2.15** Рассчитывают значения $\varphi_p(R)$ плотности потока тепловых нейтронов в диапазоне расстояний от 0,6 до 3,0 м по формуле (7.8).
- **7.3.2.16** Результаты измерений плотности потока нейтронов $\varphi_p(R)$ принимают за действительные значения плотности потока нейтронов в поле поверяемой установки и записывают в таблицу **А.6** протокола поверки.

- **7.3.2.17** Выполняют последовательность операций 7.3.2.3 7.3.2.12 для всех типов радиометров тепловых нейтронов, проходящих поверку в поле поверяемой установки.
- 7.3.2.18 Для каждого типа радиометров для каждого значения R вычисляют значение $B(R) = \frac{N(R) N_p}{N(R)}$. Результаты записывают в таблицу **А.3** протокола поверки.
- **7.3.2.19** Доверительные границы основной относительной погрешности плотности потока тепловых нейтронов δ_{θ} , %, с доверительной вероятностью P=0.95 определяют в соответствии с требованиями 7.3.1.18–7.3.1.20.

Результаты поверки считают положительными, если основная относительная погрешность поверяемой установки при доверительной вероятности 0,95 не превышает допустимого предела для рабочих эталонов 1-го и 2-го разрядов по ГОСТ Р 8.031-82.

7.3.3 Определение плотности потока нейтронов в «открытой» геометрии

- 7.3.3.1 Значение плотности потока нейтронов в «открытой» геометрии (в широком пучке) определяют методом сличения значения плотности потока нейтронного поля от конкретного источника, установленного в «открытой» геометрии, с плотностью потока в поле эталона более высокого разряда. Вклад рассеянного излучения определяют методом теневого конуса.
- 7.3.3.2 Блок детектирования радиометра-компаратора размещают на рабочем столе подвижной платформы, обеспечивающем совпадение оси симметрии блока детектирования с осью пучка нейтронов и оцифровку координаты расстояний R относительно центра радионуклидного источника, размещенного в «открытой» геометрии.
- 7.3.3.3 Устанавливают оборудование «открытой» геометрии на основание калибровочного стенда в соответствии с разделом 3.2 РЭ. Проводят юстировку оснований экранирующего конуса относительно оси, проходящей через центр радионуклидного источника нейтронов в «открытой» геометрии и эффективный центр блока детектирования радиометра-компаратора.
- **7.3.3.4** Убирают экранирующий конус. Устанавливают расстояние R_1 (не менее 0,6 м) между центрами радионуклидного источника и радиометра-компаратора.
 - 7.3.3.5 Устанавливают радионуклидный источник в «открытой» геометрии.
- **7.3.3.6** Измеряют скорость счета $N(R_I)$, с⁻¹. Время экспозиции выбирают таким, чтобы суммарное число отсчетов было не менее $5\cdot 10^5$ импульсов. Проводят не менее пяти измерений скорости счета. Значение $N(R_I)$ записывают в таблице **A.5** протокола поверки.
- **7.3.3.7** Вычисляют среднее арифметическое значение результатов измерений по формуле (7.1).
- **7.3.3.8** Увеличивая значение R на 0,1 м, повторяют операции по 7.3.3.6-7.3.3.7 до достижения значения R =3,0 м.
 - **7.3.3.9** Для каждого значения R рассчитывают значение $N^*(R)$, c^{-1} , по формуле

$$N^{*}(R) = \frac{\overline{N}}{1 - \overline{N} \cdot \tau}.$$
 (7.15)

Результаты записывают в таблицу А.5 протокола поверки.

7.3.3.10 Устанавливают экранирующий конус. Повторяют операции по 7.3.3.6–7.3.3.9.

7.3.3.11 Результат измерения скорости счета на расстояниях R в «открытой» геометрии N_{θ} определяют как разность средних значений скоростей счета, полученных при измерениях без экранирующего конуса $N^{\star}(R)$, и значений скоростей счета, полученных при измерениях с экранирующим конусом N_{κ}^{\star} , по формуле

$$N_0 = N^*(R) - N_K^*. (7.16)$$

7.3.3.12 Вычисляют среднее квадратическое отклонение (СКО) результата измерений в относительной форме по формуле

$$S_0 = \frac{1}{N_0} \sqrt{S^2 + S_\kappa^2} \,, \tag{7.17}$$

где S и S_{κ} — средние квадратические отклонения результатов измерений скоростей счета, определенных без экранирующего конуса и с экранирующим конусом, соответственно.

7.3.3.13 Для каждого значения R рассчитывают значение $N_o^*(R) = N_o e^{\mu R}$. Результаты записывают в таблицу **A.5** протокола поверки.

7.3.3.14 Для каждого значения R вычисляют значение характеристической константы системы «источник – детектор» по формуле

$$A = N_o^*(R) \cdot R^2 \tag{7.18}$$

Для интервала расстояний R, когда A = const(R) в пределах ± 1 %, вычисляют значение характеристической константы \overline{A} по формуле (7.4). Результат заносят в таблицу **A.5** протокола поверки.

7.3.3.15 Вычисляют СКО результата измерений по формуле (7.6).

7.3.3.16 Вычисляют значение характеристической константы A^* с учетом чувствительности радиометра-компаратора по формуле

$$A^* = \frac{A}{K},\tag{7.19}$$

где $K_{_{2}}$ – коэффициент чувствительности, приводящий к единицам плотности потока нейтронов.

7.3.3.17 Значение плотности потока нейтронов в «открытой» геометрии в направлении, перпендикулярном оси источника, рассчитывают по формуле

$$\varphi(R) = \frac{A}{R^2} \,. \tag{7.20}$$

7.3.3.18 Результаты измерений плотности потока нейтронов $\varphi(R)$ принимают за действительные значения плотности потока нейтронов в поле поверяемой установки и записывают в таблицу **А.6** протокола поверки.

7.3.3.19 Доверительные границы основной относительной погрешности δ_0 , %, плотности потока нейтронов в «открытой» геометрии определяют в соответствии с 7.3.1.18–7.3.1.20.

Результаты поверки считают положительными, если основная относительная погрешность поверяемой установки при доверительной вероятности 0,95 не превышает допустимого предела для рабочих эталонов 1-го и 2-го разрядов по ГОСТ 8.031-82.

- 7.3.4 Определение мощности амбиентного эквивалента дозы и мощности индивидуального эквивалента дозы нейтронного излучения
- 7.3.4.1 Значение мощности амбиентного эквивалента дозы и индивидуального эквивалента дозы нейтронного излучения определяют методом сличения значения мощности амбиентного (индивидуального) эквивалента дозы в поле поверяемой установки с конкретным источником, установленным в коллиматор, с мощностью амбиентного (индивидуального) эквивалента дозы в поле эталона более высокого разряда в соответствии с поверочной схемой ГОСТ 8.803-2012.
 - **7.3.4.2** Проводят измерения в соответствии с п.п. 7.3.1.2 7.3.1.12.
- **7.3.4.3** Вычисляют значение мощности амбиентного эквивалента дозы в поле поверяемой установки на расстоянии 1 м от центра источника по формуле

$$\dot{H}^{*}(10)_{1_{M}} = \dot{H}_{3}^{*}(10)_{1_{M}} \frac{A_{p}}{A_{3}} \cdot \frac{(1 - \Delta R_{p})^{2}}{(1 - \Delta R_{3})^{2}}, \tag{7.21}$$

где H_3^* , A_3 и ΔR_3 – значения относятся к эталону более высокого ранга, по которому проводится сличение;

 $\overset{\bullet}{H}^*$, $A_{_p}$ и $\Delta R_{_p}$ — значения для поверяемой установки.

7.3.4.4 Рассчитывают значения мощности амбиентного эквивалента дозы на расстоянии R в диапазоне расстояний от 0,6 до 3,0 м для поверяемой установки $H^*(10)_R$ по формуле

$$\overset{\bullet}{H}^{*}(10)_{R} = \overset{\bullet}{H}^{*}(10)_{1M} \frac{(1 - \Delta R)^{2}}{(R - \Delta R)^{2}} e^{-\mu(R-1)}, \tag{7.22}$$

- **7.3.4.5** Результаты измерений мощности амбиентного эквивалента дозы $H^*(10)_R$ принимают за действительные значения мощности амбиентного эквивалента дозы в поле поверяемой установки и записывают в таблицу **A.6** протокола поверки.
- **7.3.4.6** Вычисляют значение мощности индивидуального эквивалента дозы в поле поверяемой установки на расстоянии 1 м от центра источника по формуле

$$\dot{H}_{p}(10)_{1M} = \dot{H}_{p_{0}}(10)_{1M} \frac{A_{p}}{A_{0}} \cdot \frac{(1 - \Delta R_{p})^{2}}{(1 - \Delta R_{0})^{2}},$$
(7.23)

где H_{p_3} , A_3 и ΔR_3 — значения относятся к эталону более высокого ранга, по которому проводится сличение;

 H_n , A_n и ΔR_n — значения для поверяемой установки.

7.3.4.7 Значения мощности индивидуального эквивалента дозы на расстоянии R в диапазоне расстояний от 0,6 до 3,0 м для поверяемой установки $H_p(10)_R$ рассчитывают по формуле

$$\dot{H}_{p}(10)_{R} = \dot{H}_{p}(10)_{1M} \frac{(1 - \Delta R)^{2}}{(R - \Delta R)^{2}} e^{-\mu(R-1)}, \qquad (7.24)$$

- **7.3.4.8** Результаты измерений мощности индивидуального эквивалента дозы $H^*(10)_R$ принимают за действительные значения мощности индивидуального эквивалента дозы в поле поверяемой установки и записывают в таблицу **А.6** протокола поверки.
- **7.3.4.9** Доверительные границы основной относительной погрешности δ_0 , %, мощности амбиентного (индивидуального) эквивалента дозы в поле поверяемой установки с доверительной вероятностью P = 0.95 определяют в соответствии с п.п. 7.3.1.18–7.3.1.20.

Результаты поверки считают положительными, если основная относительная погрешность поверяемой установки при доверительной вероятности 0,95 не превышает 7%.

- 7.3.5 Определение мощности амбиентного эквивалента дозы и мощности индивидуального эквивалента дозы нейтронного излучения при измерениях в "открытой" геометрии
- **7.3.5.1** Значения мощности амбиентного эквивалента дозы нейтронного излучения рассчитывают в соответствии с рекомендациями ISO-8529 по формуле:

$$H^{*}(10) = \varphi \cdot k_{H^{*}(10)}. \tag{7.25}$$

где ф - плотность потока нейтронов, определённая в соответствии с п. 7.3.3.

7.3.5.2 Значения мощности индивидуального эквивалента дозы нейтронного излучения рассчитывают в соответствии с рекомендациями ISO-8529 по формуле

$$\overset{\bullet}{H}_{P}(10) = \varphi \cdot k_{H_{P}(10)}. \tag{7.26}$$

- **7.3.5.3** Значения коэффициентов перехода от флюенса к эквиваленту дозы (от плотности потока нейтронов к мощности эквивалента дозы) для радионуклидных источников нейтронов приведены в справочном Приложении Б.
- **7.3.5.4** Результаты определения мощности амбиентного эквивалента дозы и мощности индивидуального эквивалента дозы нейтронного излучения записывают в таблицу **А.6** протокола поверки.

8 Оформление результатов поверки

- **8.1** Результаты поверки оформляют протоколом поверки по форме, приведенной в приложении A.
- **8.2** Положительные результаты поверки оформляют выдачей свидетельства о поверке установки установленной формы.
 - 8.3 При отрицательных результатах поверки:
 - поверяемая установка к применению не допускается;
 - на установку выдается извещение о непригодности установленной формы с указанием причин непригодности;
 - свидетельство о поверке установки аннулируется.

Приложение А (рекомендуемое) Форма протокола поверки

Протокол поверки установки поверочной нейтронного излучени	я УПН-АТ140 зав. №
ДАТА ПОВЕРКИ	
ПОВЕРКА ПРОВОДИЛАСЬ	
поверочный ој	эган
Условия поверки:	
температура	°C;
относительная влажность	%;
атмосферное давление	кПа;
внешний фон гамма-излучения	мкЗв/ч;
1 Внешний осмотр	
документация	
комплектность	
отсутствие механических повреждений	
2 Опробование	
работоспособность	
соответствие ПО	

Таблица А.1 Результаты проверки программного обеспечения

Наименование ПО	Идентификационное наименование ПО	Номер версии (идентификационный номер) ПО	Цифровой идентификатор ПО (контрольная сумма исполняемого кода)	Алгоритм вычисления цифрового идентификатора ПО
UPNControl	UPNControl.exe			
Программа контроллера ДУО	IPLC			
Программа контроллера КС	CPLC			
Программа панели опе- ратора ДУО	IPO			
Программа панели опе- ратора КС	СРО			

3 Определение метрологических характеристик

Таблица А.2 Результаты измерения плотности потока нейтронов

<i>R</i> ,	$\begin{bmatrix} N \\ c^{-1} \end{bmatrix}$	N*, c ⁻¹	$\frac{1}{\sqrt{N^*}}$	$\frac{1}{(R-\Delta R_I)^2}$	$\frac{1}{\sqrt{N*-N_{pl}}}$	$\frac{1}{(R-\Delta R_2)^2}$	•••	A
0,8								
0,9								
							E	
3,0		:						
$\overline{\overline{A}}$								

Таблица А.3 Результаты определения вклада рассеянного излучения

				В		
R,	φ , $c^{-1}m^{-2}$	(тип радиометра)	(тип радиометра)	(тип радиометра)	(тип радиометра)	(тип радиометра)
0,8						
0,9						
3,0						

Таблица А.4 Результаты определения плотности потока тепловых нейтронов

<i>R</i> ,м	N_{I}	$N_{I\!I}$	$N_{I\!I\!I}$	$N_{I\!V}$	N_I^*	$N_{I\!I}^*$	$N_{I\!I\!I}^*$	$N_{{\scriptscriptstyle IV}}^*$	$N_{_{T}}$	N^*_{T}	$\frac{1}{\sqrt{N_T^*}}$	A
0,8 0,9												
3,0												
$\overline{\overline{A}}$					_							

Таблица А.5 Результаты определения плотности потока нейтронов в "открытой" геометрии

<i>R</i> , м	N, c ⁻¹	N^* , c ⁻¹	N_K , c^{-1}	N_K^* , c ⁻¹	N_o^*	A
0,6 0,7						
3,0						
\overline{A}						

Таблица А.6 Результаты определения метрологических характеристик установки

		Ис	Источник типа №						Источник типа №				[৹	
		Коллі	иматор			Эткрыта еометрі			Колли	матор			ткрыт ометр	- 1
<i>R</i> , м	ф быстр-	H*(10)	$\dot{H}_p(10)$	Фтепл	ф быстр.	<i>H</i> *(10)	$H_p(10)$	ф быстр-	<i>H</i> *(10)	$\dot{H}_p(10)$	фтепл.	ф быстр.	. *(10)	$\dot{H}_P(10)$
0,8 0,9											:			
3,0														

Установка УПН-АТ140			методике поверки.
	соответствует/не	соответствует	
Свидетельство N (Извещение о непригодности)	от		
Поверитель			1
	лич	ная подпись	расшифровка подписи
« » 20			

Приложение Б (справочное)

Таблица Б.1 Значения коэффициентов перехода от флюенса к эквиваленту дозы (от плотности потока нейтронов к мощности эквивалента дозы) для радионуклидных источников нейтронов различного спектрального состава

Рониолични и й источни	Коэффициент конверсии		
Радионуклидный источник _	$k_{H^*(10)}$, (pSv cm ²	$k_{Hp(10)}$, (pSv cm ²)	
$^{252}Cf+D_2O$ замедлитель (диаметр 30см)	105	110	
²⁵² Cf	385	400	
²³⁸ Pu - $B(\alpha,n)$ [²⁴¹ Am - $B(\alpha,n)$]	408	426	
²³⁸ Pu -Be(α ,n) [²⁴¹ Am -Be(α ,n)]	391	411	

Таблица Б.2 Рекомендуемые значения коэффициентов ослабления нейтронов воздухом (μ) для радионуклидных источников нейтронов различного спектрального состава и периодов полураспада основных радионуклидов в источниках ($T_{1/2}$).

Радионуклидный источник	μ , м ⁻¹	<i>Т</i> _{1/2} , лет
Тепловые (подкадмиевые)	5,70·10 ⁻²	
$^{252}Cf+D_2O$ замедлитель (диаметр 30 см)	$2,96 \cdot 10^{-4}$	2,65
²⁵² Cf	1,05·10-4	2,65
²³⁸ Pu - $B(\alpha,n)$ [²⁴¹ Am - $B(\alpha,n)$]	$0,83 \cdot 10^{-4}$	87,7 [432,6]
^{238}Pu -Be(α ,n) [^{241}Am -Be(α ,n)]	0,87·10 ⁻⁴	87,7 [432,6]

Лист регистрации изменений

Изм.	Номера листов (страниц)			Всего	№ до-	· ·	Подп.	Дата	
	изме- ненных	заме- новых аннули- рован- ных		ку- мента	ку- № сопро- мента водитель- ного доку- мента и дата				