ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Дозиметры индивидуальные ДКГ-АТ2503, ДКГ-АТ2503А

Назначение средства измерений

Дозиметры индивидуальные ДКГ-AT2503, ДКГ-AT2503A (далее - дозиметры) предназначены для измерений индивидуального дозового эквивалента \mathbf{H}_p (10) (далее - дозы) и мощности индивидуального дозового эквивалента \mathbf{H}_p (10) (далее - мощности дозы) непрерывного рентгеновского и гамма-излучений в диапазоне энергий от 50 кэВ до 1,5 МэВ.

Описание средства измерений

Принцип действия дозиметров основан на измерении частоты импульсов, генерируемых в счетчике Гейгера - Мюллера под воздействием рентгеновского и гамма - излучений. Преобразование частотных распределений в непосредственно измеряемые физические величины (мощность дозы, дозу) осуществляется автоматически.

Благодаря энергокомпенсирующему фильтру эффективно реализуется коррекция энергетической зависимости чувствительности во всем диапазоне энергий. Управление всеми режимами работы дозиметров, выполнение вычислений, хранение и индикация результатов измерений, самодиагностика осуществляются микропроцессорным устройством.

Дозиметры индивидуальные ДКГ-АТ2503, ДКГ-АТ2503А представляют собой носимые на теле миниатюрные микропроцессорные прямопоказывающие приборы.

Общий вид дозиметров индивидуальных ДКГ-АТ2503, ДКГ-АТ2503А приведен на рисунке 1.

Рисунок 1 - Общий вид дозиметров индивидуальных ДКГ-АТ2503, ДКГ-2503А

Пломбирование дозиметров проводят специальной пленкой, которую наклеивают на экран под верхней крышкой дозиметра.

Программное обеспечение

Программное обеспечение (ПО) дозиметров индивидуальных ДКГ-АТ2503, ДКГ-АТ2503A встроенное.

ПО предназначено для задания условий измерений, обработки результатов измерений, сохранения и отображения на экране дозиметра.

Встроенное ПО размещается в энергонезависимой части памяти микропроцессора, запись которой осуществляется в процессе производства. Встроенное ПО защищено от преднамеренных и непреднамеренных изменений пломбой. Проверка соответствия встроенного ПО осуществляется проверкой отсутствия сообщений об ошибках тестов самоконтроля и целостности пломбы на дозиметре.

К метрологически значимому относится все ПО дозиметров. Идентификационные данные ПО дозиметров индивидуальных ДКГ-АТ2503, ДКГ-АТ2503А приведены в таблице 1.

Таблица 1

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	Doza1t1new2503_P_LF73_VT2_01A95994.hex
Номер версии (идентификационный номер) ПО	-
Цифровой идентификатор ПО (CRC32)	01A95994

В соответствии с Р 50.2.077-2014 уровень защиты встроенного ПО дозиметров индивидуальных ДКГ-АТ2503, ДКГ-АТ2503A от непреднамеренных и преднамеренных изменений соответствует уровню «высокий».

Метрологические и технические характеристики

Основные метрологические и технические характеристики дозиметров приведены в таблице 2.

Таблица 2

1 иолица 2		
V опостопнотние	Значение	
Характеристика	ДКГ-АТ2503	ДКГ-АТ2503А
Диапазон энергий регистрируемого рентгеновского		
и гамма-излучений, МэВ	от 0,05 до 1,5	
Диапазон измерений мощности дозы непрерывного	от 0,1 мкЗв/ч	от 0,1 мкЗв/ч
рентгеновского и гамма - излучений	до 0,5 Зв/ч	до 0,1 Зв/ч
Диапазон измерений дозы непрерывного рентге-		
новского и гамма - излучений при мощности дозы		
до верхнего предела диапазона измерений	от 1 мкЗв до 10 Зв	
Пределы допускаемой основной относительной	$\pm (15 + \mathbf{I}_{p}^{\mathbf{q}}(10)/50)$	
погрешности измерений дозы, %:		
Пределы допускаемой основной относительной	$\pm (15 + 3.5 \cdot 10^{-3} / 14^{\circ}_{p} (10) + 14^{\circ}_{p} (10) / 50)$	
погрешности измерений мощности дозы, %		
Энергетическая зависимость показаний дозиметров		
относительно энергии 662 кэВ (¹³⁷ Cs) в диапазоне		
энергий от 0,05 до 1,5 МэВ, %, не более:	±30	
Зависимость чувствительности дозиметров от угла	20 в угловом интервале до $\pm 75^{\circ}$	
падения регистрируемого излучения (анизотропия),	для ¹³⁷ Cs	
%, не более	50 в угловом инт для ²⁴	тервале до $\pm 75^{\circ}$
	Для ²⁴	¹ Am

Характеристика	Значение	
Ларактеристика	ДКГ-АТ2503	ДКГ-АТ2503А
Время отклика дозиметров на изменение мощности		
дозы (при мощности дозы более 10 мкЗв/ч), с,		
не более	5	
Пределы допускаемой дополнительной относитель-		
ной погрешности измерений дозы и мощности		
дозы, %:		
- при изменении температуры окружающего воз-		
духа в диапазоне от минус 10 до 40 °C от нормаль-		
ных условий;	± 1	0
- при изменении относительной влажности до 90%		
при температуре окружающего воздуха 35 °C		
(с учетом температурной погрешности);	± 1	0
- при изменении напряженности постоянных и		
(или) переменных магнитных полей до 400 А/м		
от нормальных условий	±5	5
Рабочие условия эксплуатации дозиметров:		
- диапазон температур окружающего воздуха, °С;	от -10 до +40	
- атмосферное давление, кПа;	от 84 до	106,7
- относительная влажность окружающего воздуха		
при температуре 35 °C и более низких температу-		
рах без конденсации влаги, %	до 9	90
Масса дозиметров (без элементов питания), кг,		
не более	0,0	7
Габаритные размеры дозиметров (без клипсы), мм,		
не более	85 x 46	
Средняя наработка на отказ, ч	150	00

Дозиметры сохраняют работоспособность после кратковременного (не более 5 мин) воздействия гамма-излучения с 10-кратным превышением мощности дозы, соответствующей верхнему пределу измерений. При этом дозиметры обеспечивают звуковую сигнализацию и визуальную индикацию в течение всего периода воздействия перегрузки.

Дозиметры обеспечивают возможность ввода любого из восьми наперед заданных пороговых уровней дозы (мощности дозы), звуковую и визуальную сигнализацию его превышения, а также превышения верхнего предела измерений по дозе (мощности дозы).

Питание дозиметров осуществляется от трех батарей типа СЦ-33 (SR44) номинальным напряжением 1,5 В каждая и номинальной емкостью не менее 0,1 $A\cdot ч$.

Суммарное время работы дозиметров от одного комплекта батарей в нормальных условиях при мощности дозы не более 1 мкЗв/ч не менее 1000 ч и не менее 5000 ч в экономичном подрежиме работы.

Средний ток, потребляемый дозиметрами при питании от комплекта батарей, не более 0,1 мA

Знак утверждения типа

наносится на этикетку, расположенную на задней крышке дозиметра и на титульный лист руководства по эксплуатации методом компьютерной графики.

Комплектность средства измерений

Комплект поставки дозиметров индивидуальных указан в таблице 3.

Таблица 3

Наименование	Количество	Примечание
Дозиметр индивидуальный ДКГ-АТ2503_	1	
Элемент питания типа СЦ-33	3	Допускается замена на элемент питания типа A76, SR44, V357, LR44
Цепочка с зажимом	1	прикреплена к корпусу дозиметра
Дозиметры индивидуальные ДКГ-АТ2503, ДКГ-АТ2503А. Руководство по эксплуатации	1	содержит раздел 5 «Поверка»
МП.МН 743-99 «Дозиметры индивидуальные ДКС-АТ2503, ДКГ-АТ2503А. Методика поверки"	1	
Чехол защитный	3	7 х 10 см
Упаковка	1	

Поверка

осуществляется по документу МП.МН 743-99 «Дозиметры индивидуальные ДКГ-AT2503, ДКГ-AT2503A. Методика поверки», утвержденному ГП «ЦЭСМ» в ноябре 1999 г.

Основные средства поверки:

- установка поверочная дозиметрическая гамма-излучения эталонная по ГОСТ 8.087-2000, с набором источников из радионуклида 137 Cs, диапазон мощности кермы в воздухе (мощности экспозиционной дозы) от $7\cdot10^{-7}$ до $5\cdot10^{-1}$ Гр/ч (от $7\cdot10^{-5}$ до $5\cdot10^{1}$ Р/ч), погрешность аттестации установки не более $\pm5\%$;
- установка поверочная дозиметрическая рентгеновского излучения эталонная по ГОСТ 8.087-2000, диапазон энергий фотонов от 60 до 250 кэВ, диапазон мощности кермы в воздухе от 0,6 до 0,9 мГр/ч (от 60 до 90 мР/ч), погрешность аттестации установки не более $\pm 5\%$.

Сведения о методиках (методах) измерений

«Дозиметры индивидуальные ДКГ-АТ2503, ДКГ-АТ2503А. Руководство по эксплуатации».

Нормативные и технические документы, устанавливающие требования к дозиметрам индивидуальным ДКГ-АТ2503, ДКГ-АТ2503А

- 1 Приказ Министерства здравоохранения и социального развития Российской Федерации № 1034н от 09 сентября 2011 г. «Об утверждении Перечня измерений, относящихся к сфере государственного регулирования обеспечения единства измерений и производимых при выполнении работ по обеспечению безопасных условий и охраны труда, в том числе на опасных производственных объектах, и обязательных метрологических требований к ним, в том числе показателей точности»
- 2 ГОСТ 27451-87 Средства измерений ионизирующих излучений. Общие технические условия
- 3 ГОСТ 8.804-2012 ГСИ. Государственная поверочная схема для средств измерений кермы в воздухе, мощности кермы в воздухе, экспозиционной дозы, мощности экспозиционной дозы, амбиентного, направленного и индивидуального эквивалентов дозы, мощностей амбиентного, направленного и индивидуального эквивалентов дозы и потока энергии рентгеновского и гамма-излучений
- 4 ТУ РБ 37318323.015-99 «Дозиметры индивидуальные ДКГ-АТ2503, ДКГ-АТ2503А»

Изготовитель

Научно-производственное унитарное предприятие «АТОМТЕХ» ОАО «МНИПИ» (УП «АТОМТЕХ»)

Адрес: 220005, Республика Беларусь, г. Минск, ул. Гикало, 5

Тел./факс (+375 17) 2928142 E-mail: <u>info@atomtex.com</u>

Экспертиза проведена

ФГУП «ВНИИМ им. Д.И. Менделеева»

Адрес: 190005, Россия, г. Санкт- Петербург, Московский пр. д. 19

Тел. (812) 251-76-01; факс (812) 713-01-14

E-mail: info@vniim.ru

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. « ___ » _____ 2016 г.