рН-метр-милливольтметр рН-410

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ 4215-008-1-81696414-2007 РЭ

1. ОПИСАНИЕ И РАБОТА ПРИБОРА	3
1.1. Назначение прибора	
1.2. Технические характеристики	3
1.3. Состав и комплектация прибора	6
1.4. Устройство и работа прибора	7
1.5. Маркировка	10
1.6. Упаковка	10
2. ТРЕБОВАНИЯ ОБЕСПЕЧЕНИЯ БЕЗОПАСНОСТИ ПРИ	
ЭКСПЛУАТАЦИИ	10
3. ПОРЯДОК РАБОТЫ	10
3.1. Подготовка к работе	
3.2. Подключение к сети	11
3.3. Общие сведения	12
3.4. Выполнение измерений	13
4. ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ	20

Настоящее руководство по эксплуатации распространяется на рН-метры-милливольтметры рН-410 (далее по тексту приборы) при использовании их по назначению, изучении правил эксплуатации, хранения и транспортирования.

рН-метр-милливольтметр рН-410 является портативным прибором с сетевым и автономным питанием и предназначен для измерения рН, ЭДС (Eh) и температуры исследуемых сред. Отображение значений измеряемой величины (рН, мВ, °С) производится в цифровой форме на жидкокристаллическом дисплее.

Прибор рассчитан для работы с серийно выпускаемыми электродами, в т.ч. комбинированными.

рН-метры-милливольтметры рН-410 применяются при аналитическом контроле воды, пищевых продуктов и сырья, фарм - и ветпрепаратов, объектов окружающей среды в стационарных и передвижных лабораториях, в производственных системах непрерывного контроля технологических процессов, а также в полевых условиях. Приборы могут использоваться как в клиникодиагностических, судебно-медицинских, научно-исследовательских лабораториях, так и в лабораториях государственного контроля и надзора.

Приборы с комбинированными электродами специального назначения применяются при контроле продукции и технологических процессов в мясомолочной и хлебопекарной промышленности.

К работе с прибором допускаются специалисты, изучившие нормативную документацию, действующие правила работы с химическими реактивами по ГОСТ 12.4.21. Требования к уровню специальной подготовки не предъявляются.

Настоящее руководство по эксплуатации распространяется на pH-метры-милливольтметры pH-410, выпускаемые по ТУ 4215-008-81696414-2007.

1. ОПИСАНИЕ И РАБОТА ПРИБОРА

1.1. Назначение прибора

1.1.1. рН-метр-милливольтметр рН-410 в документации и при заказе имеет следующее обозначение:

рН-метр-милливольтметр рН-410 по ТУ 4215-008-81696414-2007.

1.1.2. рН-метры-милливольтметры рН-410 с электродной системой, включающей измерительный электрод и электрод сравнения или комбинированный электрод, предназначены для измерения рН, окислительно-восстановительного потенциала (Eh) и температуры исследуемых сред.

Параметры исследуемой среды (условия работы электродной системы):

- среда водные растворы неорганических и органических соединений, технологические растворы и др., образование пленок и осадков не допускается;
- температура анализируемой среды при измерении водородного показателя: от −10 °C* до 100 °C;
- температура анализируемой среды при измерении окислительновосстановительного потенциала: от −10 °C* до 100 °C:
- 1.1.3. Приборы климатического исполнения УХЛ 3.1** со степенью защиты от проникновения твердых тел и воды IP32 изготавливаются в общепромышленном исполнении с диапазоном рабочих температур от -10 до $+40\,^{\circ}$ С.
- * Для растворов с температурой кристаллизации ниже -10 °С при использовании специальных электродов.
 - ** Номинальные значения климатических факторов по ГОСТ 15150-69.

1.2. Технические характеристики

- 1.2.1. Диапазоны измерений и цены единиц младшего разряда соответствуют значениям, указанным в таблице 1.
- 1.2.2. Пределы допускаемых значений основной абсолютной погрешности прибора приведены в таблице 2.
- 1.2.3. Пределы допускаемых дополнительных погрешностей прибора, вызванных изменениями влияющих величин, приведены в таблице 3.

4. ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

- **4.1.** Условия транспортирования должны соответствовать условиям хранения № 1 по ГОСТ15150-69. Температура транспортирования и хранения должна быть от +5 °C до +40 °C
- **4.2.** Транспортирование прибора в транспортной упаковке может осуществляться всеми видами транспорта. Размещение прибора должно исключать возможность его смещения и удара.
- **4.3.** Во время погрузо-разгрузочных работ коробка с прибором не должна подвергаться резким ударам и воздействию атмосферных осадков. При погрузке и выгрузке прибора необходимо выполнять требования, предупреждающие повреждения маркировки на транспортной таре.
- **4.4.** Прибор в транспортной упаковке должен храниться в условиях, исключающих механические повреждения, и при отсутствии в окружающем воздухе газов и паров кислот и щелочей, вызывающих коррозию.

- 3.4.5.5. В режиме калибровки («CAL») удерживать 3-5 секунд кнопку «Един.изм.» на дисплее отобразится результат измерения температуры термодатчиком.
- 3.4.5.6. Кнопками «Вверх», «Вниз» установить значение температуры, измеренное ртутным термометром ТЛ-4.
 - 3.4.5.7. Кнопкой «ВВОД» подтвердить введенное значение.

3.4.6 Изменение значения изопотенциальной точки

- 3.4.6.1 Включить прибор кнопкой «Вкл/Выкл» удерживая 2-3 секунды и перейти в режим калибровки, удерживая кнопку «САL» 3-5 секунд.
- 3.4.6.2.Нажать повторно и удерживать около 3-5 секунд кнопку «CAL» на дисплей выводится текущее значение pH_{u} изопотенциальной точки
- 3.4.6.3 Нажатием кнопок «Вверх» или «Вниз» установить значение рН изопотенциальной точки применяемого измерительного электрода в соответствии с паспортом электрода.
- 3.4.6.4 Кнопкой «ВВОД» подтвердить введенное значение.
- 3.4.6.5. Нажатием кнопок «Вверх» или «Вниз» установить значение EpH_{u} (ЭДС изопотенциальной точки) применяемого измерительного электрода в соответствии с паспортом электрода.
- 3.4.6.6 Кнопкой «ВВОД» подтвердить введенное значение.

Примечание! По умолчанию в приборе для изопотенциальной точки установлены $pH_u=7$ и $EpH_u=0$ мВ) .

Примечание! Кнопкой «Возврат» можно прервать процесс без сохранения введенных значений.

Таблица 1. Диапазоны измерений и цены единиц младшего разряда

Измеряемая	Единица	Диапазон	Цена единицы
величина	измерения	измерений	младшего
			разряда
			(дискретность)
Водородный	рН	от 0 до 14	0,01
показатель			
Окислительно-	мВ	от -999,9 до +999,9	0,1
восстановитель-		от -1999 до -1000	1
ный потенциал		от +1000 до +1999	1
Температура	°C	от минус 10	0,1
анализируемой		до 100 °C	
среды*			

^{*} Для растворов с температурой кристаллизации ниже -10 °C при использовании специальных электродов.

Таблица 2. Пределы допускаемых значений основной абсолютной погрешности

Измеряемая величина	Предел допускаемой основной абсолютной погрешности прибора
Водородный показатель, рН	±0,05
Окислительно-	±2,0
восстановительный	
потенциал, мВ	
Температура анализируемой	±2,0
среды, °С	

Таблица 3. Пределы допускаемых дополнительных погрешностей

Влияющая Величина	Значение влияющей величины	дополни долях д абсолютно	едел допуска тельной погр опускаемой й погрешнос жиме измере потенци- ала	ешности в основной ти прибора в
1. Температура окружающего воздуха, на каждые 10 °C	от минус 5 до 40°C	0,3	0,4	0,2
2. Температура анализируемой среды при автоматической термокомпенсации	от минус 10 до 100°C	0,6	-	-
3. Сопротивление измерительного электрода, на каждые 500 Мом	от 0 до 1000 МОм	0,4	0,6	-
4. Относительная влажность окружающего воздуха	от (30-80)% при 20°C до 90% при 25°C	0,8	1,2	-
5. Стабильность показаний	при 25℃ за 3 ч работы		0,03 pH	

1.2.4. Время установления рабочего режима преобразователя рНметра не должно превышать 3 с.

Примечание! Время установления показаний прибора зависит от состояния электродов и состава контролируемой среды (иногда оно может достигать нескольких минут).

1.2.5. Количество сохраняемых в памяти калибровок: 1.

3.4.4. Выполнение измерений окислительно-восстановительного потенциала раствора Eh (ЭДС)

Выполняют следующие операции:

Датчик температуры и электроды погружают в измеряемую среду. Нажатием и удержанием кнопки «Вкл/Выкл» в течение 2-3 секунд включают прибор. На дисплее отображается значение окислительновосстановительного потенциала	105.3 mV
раствора Eh. После (или в процессе) получения результатов измерений при необходимости можно перейти в режим измерения температуры раствора, нажав кнопку «Ед.изм». На дисплее отображается результат измерения температуры раствора в °C.	36.5 °C

Нажатием и удержанием кнопки «Вкл/Выкл» в течение 2-3 секунд выключают прибор.

По окончании работы электроды промывают дистиллированной водой, а затем погружают в 0,1 н раствор соляной кислоты или дистиллированную воду.

3.4.5. Калибровка термокомпенсатора

Примечание! Проводится только в случае заметного расхождения показаний прибора при измерении температуры с ее действительным значением)

- 3.4.5.1. Подключить термокомпенсатор к соответствующему разъему прибора (рис. 1).
- 3.4.5.2. Погрузить термокомпенсатор и термометр ртутный ТЛ-4, кл. 1; ц. д. 0,1 °C по ТУ 25-2021.003-88 в емкость с водой при комнатной температуре.
 - 3.4.5.3. Снять показания ртутного термометра ТЛ-4.
- 3.4.5.4. Включить прибор кнопкой «Вкл/Выкл» и перейти в режим калибровки удерживая кнопку «САL» 3-5 секунд.

Нажатием и удержанием кнопки «ВКЛ/ВЫКЛ» выключают прибор. По окончании работы электроды промывают дистиллированной водой, а затем погружают в 0,1 н раствор соляной кислоты или дистиллированную воду.

3.4.3. Выполнение измерений рН

Датчик температуры и электроды погружают в измеряемую среду. Нажатием и удержанием кнопки «ВКЛ/ВЫКЛ» на 2-3 секунды включают прибор. На дисплее прибора отображается результат измерения ЭДС раствора в мВ.	180.7 mV
Нажатием кнопки «Ед.изм.» выбирают режим измерений рН. Проводят измерение. Показания прибора - результат измерения в рН - отображается на дисплее. Результаты регистрируют после установления стабильного значения на дисплее.	5.85 pH
Переключение прибора между режимами измерения рН, окислительновосстановительного потенциала или температуры осуществляется последовательным нажатием кнопки «Ед.изм».	35.9 mv
При очередном нажатии кнопки «Ед.изм» на дисплее отобразится результат измерения температуры раствора в ⁰ C.	36.5 °C

- 1.2.6. Хранение в памяти крутизны электродной функции электрода: есть.
 - 1.2.7. Выбор из ряда стандартных буферных растворов : есть.
 - 1.2.8. Ручной ввод значения буферного раствора: есть
 - 1.2.9. Электропитание:
- автономное от двух NiMH аккумуляторов типа AAA номинальным напряжением 1,2 B;
- сетевое через сетевой адаптер с выходом Mini USB Тип В при подключении к однофазной сети переменного тока частотой 50 ± 1 Гц и напряжением 220 ± 22 В.
 - 1.2.10. Масса прибора без упаковки, кг, не более: 0,4.
 - 1.2.11. Габаритные размеры преобразователя, мм: 240×100×51.
- 1.2.12. Градуировка прибора для измерений рН осуществляется с применением:
 - стандартных государственных образцов стандарт-титров;
 - колб мерных наливных по ГОСТ 1770;
 - пипеток мерных по ГОСТ 20292.
- 1.2.13. Поверка выполняется в соответствии с инструкцией «Инструкция рН-метры-милливольтметры мод.рН-410 и рН-420. Методика поверки 4215-008-81696414-2007 МП».

1.3. Состав и комплектация прибора

1.3.1. Комплектация прибора указана в таблице 4.

Таблица 4. Комплектация

Наименование и обозначение	Количество
Преобразователь 4215.008.001	1 шт.
Сетевой адаптер с выходом Mini USB Тип В	1 шт.
Термокомпенсатор	1 шт.
Руководство по эксплуатации 4215-008-1-81696414- 2007 РЭ	1 экз.
Методика поверки 4215-008-81696414-2007 МП	1 экз.
Паспорт 4215-008-81696414-2007 ПС	1 экз.

1.3.2. Преобразователь представляет собой микропроцессорный блок с жидкокристаллическим дисплеем, клавиатурой и встроенным источником автономного питания.

1.3.3. По согласованию с Заказчиком возможна комплектация прибора дополнительными принадлежностями.

Дополнительные принадлежности:

Электрод стеклянный комбинированный ЭСЛК-01.7 Стандартные титры по ГОСТ 8.315 Штатив Специальные электроды Магнитная мешалка Кейс для работы в полевых условиях

1.4. Устройство и работа прибора

- 1.4.1. Принцип работы прибора основан на измерении разности потенциалов в электродной системе с учетом температуры измеряемой среды.
- 1.4.2. Прибор состоит из преобразователя и электродной системы. Для работы в автономном режиме, в т.ч. в полевых условиях,

прибор имеет встроенную аккумуляторную батарею.

Электродная система может включать измерительный и сравнительный электроды или комбинированный электрод. Электронная плата внутри корпуса выполняет функции измерения поступающего сигнала, его усиления, преобразования, математической обработки и вывода выходного сигнала на дисплей.

- 1.4.2.1. Электрод сравнения хлорсеребряный с электрическим сопротивлением не более 20 кОм.
- 1.4.2.2. Измерительный электрод для определения pH стеклянный, с допускаемой величиной электрического сопротивления от 10 до 1000 MOм.
- 1.4.2.3. Комбинированные электроды используют для контроля объектов окружающей среды, продукции и параметров технологических процессов в промышленности. Комбинированные электроды могут быть оснащены дополнительными устройствами для измерения рН в вязких и плотных средах, например, ножом для разрезания мяса.
- 1.4.2.4. Калибровку прибора выполняют отдельно с каждым измерительным электродом по растворам стандарт-титров.
- 1.4.2.5. Редоксметрический измерительный электрод используют при измерении окислительно-восстановительного потенциала Eh (ЭДС).
- 1.4.3. В качестве датчика температуры (термокомпенсатора) применяют термосопротивление.

Нажимают кнопку «ВВОД» для подтверждения значения рН второго калибровочного раствора [РТ2]. Прибор 35.9 mV автоматически переходит в режим измерения ЭДС второго калибровочного раствора [РТ2] в CAL PT2 Необходимо дождаться установления показаний, после чего нажимают кнопку «ВВОД» mV для ввода значения ЭДС второго калибровочного **58.3** ™ раствора [РТ2] в память прибора. На дисплее отобразится значение крутизны READY водородной характеристики применяемого электрода. После нажатия кнопки «ВВОД», прибор переходит в режим измерения рН раствора, в который погружена 9.18 nH электродная система.

Дополнение

- 1. Калибровка может проводиться в автоматическом режиме и в режиме ручного выбора рН калибровочного раствора.
- 2. По умолчанию прибор всегда входит в автоматический режим калибровки. Отказаться от него можно нажатием кнопок **«<» или «>»** и затем калиброваться обычным способом.
- 3. В автоматическом режиме прибор сам определяет значение pH калибровочного раствора и выводит его на экран, сопровождая звуковым сигналом. После вывода значения буфера необходимо выждать 30 сек и нажать «ВВОД». Если в течении минуты прибор не находит ни одного совпадения с внутренней таблицей, то необходимо перейти к ручной калибровке.
- 4. Из режима калибровки возможен выход нажатием кнопки **«Возврат».**

Нажимают кнопку «ВВОД» для подтверждения значения рН первого калибровочного раствора [РТ1]. Прибор автоматически переходит в режим измерения ЭДС первого калибровочного раствора [РТ1].

180.7 mV

Необходимо дождаться установления показаний, после чего нажимают кнопку «ВВОД» для ввода измеренного значения ЭДС первого калибровочного раствора [РТ1] в память прибора. На дисплее появляется значение рН второго калибровочного раствора [РТ2]

 $1.65_{\text{ pH}}$

После того как в память прибора было введено значение ЭДС первого калибровочного раствора [РТ1] электродную систему промывают дистиллированной водой, остатки воды удаляют фильтровальной бумагой. Электроды, подготовленные в соответствии с паспортом, погружают во второй калибровочный раствор [РТ2].

Нажатием кнопок «<» или «>» выбирают одно из стандартных значений рН второго калибровочного раствора [РТ2], заложенных в память прибора (например, 6.86 рН).

6.86 pH

Если значение второго калибровочного раствора [РТ2] не соответствует ни одному из стандартных значений, введенных в память прибора (например, требуется ввести 7.2 рН), то нажав и удерживая кнопки «Вверх» или «Вниз» его можно установить.

 7.20_{ph}

1.4.4. Расположение гнезд разъемов представлено на рис. 1.

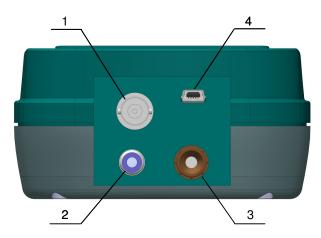


Рис.1. Вид панели прибора с разъемами

Таблица 5. Типы разъемов

Nº	Название разъема на приборе	Тип разъема
1	Измерительный	Гнездо BNC
2	Термокомпенсатор	RCA
3	Сравнения	Ш4-0
4	Питание	Mini USB Тип B

15

1.4.5. Кнопки управления расположены на лицевой панели прибора (рис. 2).

Кнопка «Единицы измерения» Переключение между измеряемыми

Переключение между измеряемыми величинами (мВ, рН, Т⁰).Переход в режим калибровки термокомпенсатора (из режима калибровки)

Кнопка «Вкл/Выкл»

Включение/Выключение прибора.

Кнопка «Возврат»

Выход в режим измерений. Возврат без сохранения параметров.

Кнопки «▲», «▼»

Изменение контрастности дисплея (в режиме измерений). Изменение значения параметра

Кнопки «◄», «►»

Выбор между пунктами меню или вариантами стандартных значений.

Кнопка «Ввод»

Выбор пункта меню. Подтверждение введенных параметров..

Кнопка «Калибровка»

При удержании 3-5 сек переход в режим калибровки Кратковременное нажатие выводит на экран значение крутизны электродной функции. Переход в режим коррекции значения изопотенциальной точки (из режима калибровки)

Рис. 2. Вид лицевой панели прибора

Наименование операции	Состояние индикатора
Электроды, подготовленные в соответствии с паспортом, погружают в первый калибровочный раствор [РТ1]. Включают прибор нажатием и удержанием кнопки «ВКЛ/ВЫКЛ». На дисплее индицируется результат измерения ЭДС раствора в мВ.	180.7 mV
Режим калибровки включают нажатием и удержанием в течение 3-5 с кнопки «CAL». На дисплее появляется знак режима автоматического определения значения рН первого калибровочного раствора [PT1].	■ ■ pH CAL PT1
Нажатием кнопок «<» или «>» выбирают одно из стандартных значений рН первого калибровочного раствора [РТ1], заложенных в память прибора (например, 4.01 рН).	4.01 pH CAL PT1
Если значение рН первого калибровочного раствора [РТ1] не соответствует ни одному из стандартных значений, введенных в память прибора, (например, требуется ввести 4.5 рН), то нажатием кнопок «Вверх» или «Вниз» его можно установить.	4.50 pH CAL PT1

3.4. Выполнение измерений

3.4.1. Установка режима термокомпенсации

Включение режима термокомпенсации осуществляется автоматически при подключении термокомпенсатора соответствующему разъему прибора (рис. 1). Режим термокомпенсации допустимо применять только в случае если он был включен при калибровке. Иначе показания прибора будут неточными. Примечание! Режим термокомпенсации применяют в случаях, если температура растворов при калибровке и измерении отличается более чем на 5 °C.

3.4.2. Режим калибровки прибора с электродной системой

- 3.4.2.1. Калибровку прибора выполняют по двум калибровочным растворам [PT1] и [PT2], значения рН которых находятся вблизи нижней [PT1] и верхней [PT2] границ диапазона.
- 3.4.2.2. Калибровку следует производить по возможности чаще, а при смене измерительного электрода обязательно. Для проведения калибровки выполняют операции, приведенные ниже.
- 3.4.2.3. Для перевода прибора в режим калибровки необходимо нажать и удерживать около 3 с кнопку CAL

1.4.6. На дисплее отображаются результаты измерений: водородного показателя - в рН окислительно-восстановительного потенциала Eh (ЭДС) - в мВ температуры - в °С.

1.5. Маркировка

1.5.1. На корпусе и клавиатуре прибора нанесены: условное обозначение прибора, заводской номер, знак государственного реестра, а также обозначения клавиш управления.

1.6. Упаковка

1.6.1. Упаковка приборов в соответствии с их комплектацией производится в упаковочные коробки, обеспечивающие сохранность при транспортировании и хранении.

2. ТРЕБОВАНИЯ ОБЕСПЕЧЕНИЯ БЕЗОПАСНОСТИ ПРИ ЭКСПЛУАТАЦИИ

К работе с прибором допускается персонал, изучивший техническую документацию на прибор и действующие правила работы с химическими реактивами по ГОСТ 12.4.21.

3. ПОРЯДОК РАБОТЫ

3.1. Подготовка к работе

- 3.1.1. После распаковки прибор осматривают и проверяют его комплектность.
- 3.1.2. Подготовку электродов к работе выполняют в соответствии с паспортом электродов. Тип измерительного электрода выбирают в соответствии аналитической задачей.

Примечание! Операции по подготовке к работе электрода сравнения (стеклянный хлорсеребряный - применяют в случае использования некомбинированного измерительного электрода) выполняют в соответствии с паспортом на электрод: заполняют электрод насыщенным раствором хлористого калия, погружают в сосуд с этим же раствором и оставляют на сутки.

Электрод сравнения всегда должен быть заполнен раствором хлористого калия не менее чем до половины.

3.1.3. Электроды, подготовленные к измерениям, подключают в соответствующие разъемы (комбинированный электрод подключается к разъему измерительного электрода, рис. 1).

3.2. Подключение к сети

- 3.2.1. Прибор подключают к питанию через разъем «Mini USB Тип В» (рис. 1). Питание может осуществляться от компьютера или от источника питания USB.
- 3.2.2. При эксплуатации преобразователя без внешнего питания встроенный аккумулятор необходимо периодически заряжать, подключив преобразователь по п. 3.2.1.

Во время зарядки во включенном состоянии в левом верхнем углу дисплея последовательно мигает надпись ВАТ. Если прибор заряжается в выключенном состоянии, то на дисплее схематично отображаются мигающий индикатор зарядки.

ВНИМАНИЕ! При эксплуатации прибора в режиме автономного питания в случае малоконтрастной индикации на дисплее необходимо провести зарядку аккумуляторов в течение 10 часов. При необходимости работы в режиме автономного питания во избежание уменьшения емкости аккумуляторов рекомендуется проводить их зарядку после полного разряда.

3.3. Общие сведения

3.3.1. Дисплей служит для вывода меню, контроля ввода параметров измерений при калибровке и регистрации результатов в заданном виде.

Результаты измерений могут быть представлены:

при измерении рН - в рН;

при измерении окислительно-восстановительного потенциала Eh - в мВ:

при измерении температуры - в °C.

На дисплее отображаются надписи:

- включенного режима калибровки «CAL»,
- результатов измерений:

водородного показателя в рН;

окислительно-восстановительного потенциала Eh (ЭДС) в mV (мВ);

температуры в °С;

-надпись «ВАТ», мигая, показывает что прибор питается от внешнего питания, при этом происходит процесс заряда аккумуляторов, (если они установлены в приборе). При внешнем питании автоматически включается подсветка дисплея. Во избежание быстрой разрядки аккумуляторов при автономном питании подсветка не включается

3.3.2. Для работы в автономном режиме, в т.ч. в полевых условиях прибор имеет встроенную аккумуляторную батарею.