ОПИСАНИЕ ПРОДУКЦИИ

Колонки TRITIUM

Область применения

- Определение трития в воде

Упаковка

Порядковый N°.	Форма	Размер частиц
H3-C20-A, H3-C50-A	20, 50 и 200 колонок Tritium	75-150 мкм

Физико-химические свойства

Емкость: Катионы (смола Diphonix): 0,8 мг-экв на колонку

Анионы (анионообменная смола 1х8): 0,8 мг-экв на колонку

Органические загрязнения (смола Prefilter) 50 мг на колонку

Условия эксплуатации

Рекомендуемая температура эксплуатации: /

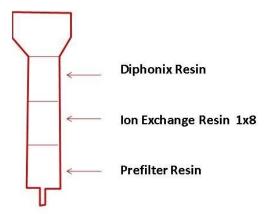
Скорость течения жидкости:: 0,6 – 0,8 мл/мин для смолы крупностью А

Хранение: в сухом темном месте, T<30°C

Для дополнительной информации см. литературный обзор.

Методики*

Ссылка	Описание	Матрица	Анализируемые элементы	Носитель
OTW02	Тритий в воде	вода	H-3	колонки


^{*}разработаны компанией Eichrom Technologies Inc.

ЛИТЕРАТУРНЫЙ ОБЗОР

КОЛОНКИ TRITIUM

Колонки Tritium (колонки Н3) используются для выделения и количественного определения свободного трития в качестве альтернативы прямому измерению или измерению после Поскольку дистилляции. колонки не концентрируют тритий, они могут быть использованы только тогда, когда предел обнаружения достигается при измерении пробы объемом 5 – 10 мл.

Свободный тритий проходит через колонку, в то время как остальные элементы из матрицы сорбируются на трех компонентах колонки Tritium (рис. 1).

Puc. 1 : Колонка Tritium

В таблицах 1 и 2 показаны типичные показатели по очистке, которые могут быть получены при использовании колонок Tritium, с помощью сравнения удельных активностей радионуклидов в пробах воды из реакторов типа BWR и PWR до и после пропускания через колонку (2).

Isotope	A before column [Bq/L]	A after column [Bq/L]
Cr-51	2900	< LD
Mn-54	518	< LD
Co-58	4740	< LD
Fe-59	109	< LD
Co-60	392	< LD
Sn-113	230	< LD
Nb-95	4220	< LD
Zr-95	2210	< LD
I-131	14200	< LD
Cs-134	1120	< LD
Cs-137	1320	< LD

Табл.1: Удаление радионуклидов колонкой Tritium из проб воды ядерного реактора типа PWR (2)

Isotope	A before column [Bq/L]	A after column [Bq/L]
Cr-51	1990	< LD
Mn-54	5590	< LD
Co-58	4960	< LD
Co-60	5990	< LD
Nb-95	116	< LD
La-140	1550	< LD
Ce-144	203	< LD

Табл.2: Удаление радионуклидов колонкой Tritium из проб воды ядерного реактора типа BWR (2)

Смола Diphonix обменивает катионы на протоны; ее теоретическая емкость составляет 0.8 мг-экв. на колонку.

Анионообменная смола 1X8 (CI- форма) поглощает анионы, которые могут ешать количественному определению трития. Ее теоретическая емкость составляет 0.8 мг-экв. на колонку. Рекомендуется использовать ее при значениях рН пробы более 1.

Смола Prefilter используется для удаления следов органических загрязнений. Ее теоретическая емкость составляет 50 мг на колонку.

В компании Procorad (l'Association pour la **Pro**motion du **Co**ntrôle de Qualité des Analyses de Biologie Médicale en **Rad**iotoxicologie) были проведены различные сравнительные испытания методов на моче и фекалиях, в том числе определение трития в пробах мочи. В таблице 3 приведены результаты, полученные в 2005 г. при сравнительных испытаниях; при этом наблюдалась хорошая корреляция между результатами, полученными с использованием колонок Tritium, дистилляции и контрольными значениями.

	Reference	Distillation		Tritium column	
Samples	Procorad A(³ H)/Bq.L ⁻¹	A(³ H)/Bq.L ⁻¹	LD/Bq.L ⁻¹	A(³H)/Bq.L ⁻¹	LD/Bq.L ⁻¹
Α	Blank	(1,22±0,46)E+01	8,27	(1,22±0,51)E+01	9,56
В	(1,54±0,05)E+03	(1,49±0,05)E+03	7,86	(1,46±0,05)E+03	9,51
С	(7,69±0,27)E+03	(7,30±0,21)E+03	8,60	(7,05±0,20)E+03	9,42
D	(3,06±0,00)E+04	(2,95±0,08)E+04	8,12	(2,64±0,07)E+04	9,78
E	(10,3±0,4)E+03	(9,81±0,28)E+03	7,71	(9,41±0,26)E+03	8,94

Табл.3: Сравнение результатов определения трития, полученных с помощью дистилляции и очистки на колонке tritium, Procorad, сравнение методов определения трития в моче

Подобные исследования проводились для проб с атомных электростанций и заводов по переработке ОЯТ. Для этих проб в равной мере было показано, что результаты, полученные методами дистилляции и разделения на колонке, очень близки.

^{* &}lt; LD – меньше предела обнаружения

ЛИТЕРАТУРНЫЙ ОБЗОР

Sample Type	A(H-3) distillation [Bq/L]	A(H-3) column [Bq/L]	Bias / %
Surface water-40	1,66 (±0,24) x 10 ²	1,92 (±0,25) x 10 ²	-13,5
Surface water-26	2,86 (±0,26) x 10 ²	2,99 (±0,27) x 10 ²	-4,3
Groundwater-16	1,25 (±0,041) x 10 ³	1,26 (±0,041) x 10 ³	-0,8
Groundwater-2C	1,73 (±0,044) x 10 ³	1,66 (±0,044) x 10 ³	4,2
BWR-RCS	1,02 (±0,004) x 10 ⁵	1,01 (±0,004) x 10 ⁵	1,0
PWR-RCS	1,62 (±0,0) x 10 ⁷	1,52 (±0,0) x 10 ⁷	6,6

Табл.4: Сравнение результатов, полученных для реальных образцов с атомной электростанции после дистилляции и после очистки на колонке (2)

Sample	A(H-3) distillation [Bq/L]	A(H-3) column [Bq/L]	Bias / %
1	2,05 x 10 ⁷	2,04 x 10 ⁷	0,5
2	4,7 x 10 ⁴	4,4 x 10 ⁴	5,9
3	1,8 x 10 ⁶	2,1 x 10 ⁶	-14,3
4	9,2 x 10 ³	9,6 x 10 ³	-4,2
5	6,4 x 10 ³	6,5 x 10 ³	-1.5

Табл.5: Сравнение результатов, полученных для реальных образцов с завода по переработке ОЯТ после дистипляции и после очистки на колонке (2)

Библиография

- (1) Cahill D.F., Peedin M.L., 41st Annual Conference On Bioassay, Analytical & Environmental Chemistry (Eichrom Workshop). Boston, MA 1995
- (2) Fern, M.J, Eichrom Denver Users Seminar. Denver, CO(1996)