ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Источники радионуклидные закрытые фотонного излучения эталонные ОСГИ-РТ

Назначение средства измерений

Источники радионуклидные закрытые фотонного излучения эталонные ОСГИ-РТ (далее - источники ОСГИ-РТ) предназначены для воспроизведения значения активности гамма-излучающих радионуклидов (меры активности).

Описание средства измерений

Источник ОСГИ-РТ представляет собой герметичную конструкцию в форме диска, состоящую из двух герметично соединенных между собой полиимидных (одно - или двухслойных) пленок с односторонним фторопластовым покрытием толщиной не менее 50 мкм каждая. Активная часть источника, выполненная из радиоактивного материала, расположена между пленками на оси источника и герметизирована методом термосварки пленок. Диаметр активной части составляет не более 3 мм, что позволяет считать источник точечным без самопоглощения при реальных геометриях измерений фотонного излучения на спектрометрах и радиометрах

Источники ОСГИ-РТ изготавливаются на основе следующих радионуклидов: натрий-22, титан-44, марганец-54, железо-55, кобальт-57, кобальт-60, цинк-65, иттрий-88, кадмий-109, олово-113, барий-133, цезий-134, цезий-137, церий-139, европий-152, гадолиний-153, висмут-207, торий-228, америций-241, америций-243.

Источники могут быть аттестованы в качестве рабочих эталонов 1-го, 2-го разрядов или в ранге вторичного эталона в зависимости от метода передачи размера единицы активности, используемого при поверке, и указанной погрешности определения активности радионуклидов в источнике в соответствии с ГОСТ 8.033-96.

Рисунок 1 – Общий вид источников ОСГИ-РТ

Программное обеспечение отсутствует.

Метрологические и технические характеристики

Таблица 1 - Метрологические характеристики источников ОСГИ-РТ

Наименование характеристики	Значение
Диапазон номинальной активности радионуклида в источнике ¹⁾ , кБк:	
- америций-243	от 1 до 50
- висмут-207, торий-228	от 1 до 100
	(от 1 до 50) ²⁾
- титан-44, цезий-134, америций-241	от 1 до 300
	(от 1 до 100) ²⁾
- кобальт-60, олово-113, гадолиний-153	от 1 до 500
	(от 1 до 100) ²⁾
- натрий-22, марганец-54, железо-55, кобальт-57, цинк-65, иттрий-88, кад-	от 1 до 1000
мий-109, барий-133, цезий-137, церий-139, европий-152	(от1 до 100) ²⁾
- иттрий-88+барий-133+европий-152+америций-241	370+37+37+37 ³⁾
Пределы допускаемой относительной погрешности воспроизведения ак-	
тивности, %:	
при выпуске источников для применения в качестве:	
- рабочих эталонов 1-го разряда	±4
- рабочих эталонов 2-го разряда	±6
- рабочего средства измерения	±10
Относительное суммарное СКО активности для источников в ранге вто-	
ричного эталона, %, не более	±1,5
Активность радиоактивных веществ, снятых с поверхности источника,	
при определении уровня радиоактивного загрязнения источника методом	
влажного мазка по МУ 2.6.5.032-2017, Бк, не более	20

 $^{^{1)}}$ Номинальное значение активности радионуклида в источнике ОСГИ-РТ в указанных пределах Заказчик устанавливает при заказе источника. Допустимые отклонения активности радионуклида в источнике от номинального значения не более $\pm 20~\%$.

Таблица 2 – Основные технические характеристики источников ОСГИ-РТ

Наименование характеристики	Значение
Габаритные размеры источников, мм, не более:	
- диаметр	25
- толщина	3
Масса, г, не более	1,83
Условия эксплуатации:	
- температура окружающего воздуха, °C	от -50 до +50
- относительная влажность при температуре +40 °C, %, не более	98
- атмосферное давление, кПа	от 25 до 500

²⁾ Диапазон активности для источников, которые могут быть аттестованы в ранге вторичного эталона. Перечень источников, которые могут быть аттестованы в ранге вторичного эталона марганец-54, кобальт-60, иттрий-88, барий-133, цезий-137, европий-152, торий-228, америций-241.

³⁾ Для мультинуклидных источников допускается изменение состава и активности каждого радионуклида по согласованию с Заказчиком.

Продолжение таблицы 2

Наименование характеристики	Значение
Назначенный срок службы источников с даты изготовления, лет:	
- америций-241, торий-228, америций-243 с активностью менее 10 кБк	5
- америций-241, торий-228, америций-243с активностью более 10 кБк	3
- иттрий-88, олово-113, церий-139	4
марганец-54, кобальт-57, цинк-65, кадмий-109, гадолиний-153	5
- натрий-22, железо-55, цезий-134	10
- остальные радионуклиды	12

Знак утверждения типа

наносится на титульный лист паспорта на источник ОСГИ-РТ методом компьютерной графики.

Комплектность средства измерений

Таблица 3 – Комплектность источников ОСГИ-РТ

Наименование	Обозначение	Количество
Источники радионуклидные закрытые фотонного излучения эталонные ОСГИ-РТ $^{1)}$	-	-
Держатель источника ²⁾	-	-
Пенал для источников	-	1
Паспорт 3)	-	1
Методика поверки ⁴⁾	МП 2101-004-2018	1
Свидетельство о поверке 5)	-	1

¹⁾ В соответствии с заказом.

Поверка

осуществляется по документу МП 2101-004-2018 «ГСИ. Источники радионуклидные закрытые фотонного излучения эталонные ОСГИ-РТ. Методика поверки», утвержденному ФГУП «ВНИИМ им. Д. И. Менделеева» 07 ноября 2018 г.

Основные средства поверки:

Рабочий эталон 1-го (2-го) разряда по ГОСТ 8.033-96 - комплект источников радионуклидных закрытых фотонного излучения эталонных ОСГИ-Р (рег. № 40714-09) с активностью радионуклидов от $5 \cdot 10^3$ до $5 \cdot 10^5$ Бк, погрешность не более $\pm 4\%$ ($\pm 6\%$);

Вторичный эталон единицы активности по ГОСТ 8.033-96 - комплект источников радионуклидных закрытых фотонного излучения эталонных ОСГИ-Р (рег. № 40714-09) с активностью радионуклидов от $5 \cdot 10^3$ до $1 \cdot 10^5$ Бк, относительное СКО ($S_{\Sigma 0}$) от 1 до 1,5 %;

Вторичный эталон единицы активности гамма-излучающих радионуклидов в диапазоне от $1 \cdot 10^1$ до $1 \cdot 10^6$ Бк (ГВЭТ 6-12) (рег. № 2.1.ZZB.0145.2015);

Государственный первичный эталон единиц активности и удельной активности радионуклидов, потока альфа-, бета-частиц и фотонов радионуклидных источников ГЭТ 6-2016.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых средств измерений с требуемой точностью.

Знак поверки (оттиск поверительного клейма) наносится на свидетельство о поверке.

Сведения о методиках (методах) измерений

отсутствуют.

²⁾ По заказу.

³⁾ На каждый источник ОСГИ-РТ.

⁴⁾ На партию при поставке в один адрес.

⁵⁾ На все поставляемые источники.