ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

рН-метры МАРК-903

Назначение средства измерений

рН-метры МАРК-903 предназначены для измерений активности ионов водорода (рН), окислительно-восстановительных потенциалов (ОВП), температуры водных растворов и электродвижущей силы (ЭДС).

Описание средства измерений

рН-метры МАРК-903 (далее - рН-метры) представляют собой малогабаритные микропроцессорные приборы, состоящие из блока преобразовательного с датчиком температуры и комбинированного рН-электрода.

В основу работы рН-метров положен потенциометрический метод измерений рН контролируемого раствора. Электродная система, состоящая из комбинированного рН-электрода, при погружении в контролируемый раствор развивает ЭДС, линейно зависящую от значения рН.

Измеренное значение ЭДС электродной системы преобразуется в значение рН с учетом температуры анализируемого раствора, т.е. выполняется автоматическая термокомпенсация, которая компенсирует изменение ЭДС электродной системы.

Блок преобразовательный (преобразователь) – микропроцессорный, осуществляющий отображение результатов измерений рН, ЭДС, ОВП и температуры водных растворов, которые выводятся на экран графического ЖК индикатора (в дальнейшем индикатор).

Блок преобразовательный выполнен в пластмассовом корпусе со степенью защиты от воздействия окружающей среды IP65.

Перечень стандартных применяемых электродов приведен в таблице 1. Характеристики применяемых электродов в соответствии с таблицей 3.

Таблица 1 - Перечень стандартных применяемых электродов

Стандартные применяемые электроды	Изготовитель		
Электрод стеклянный комбинированный ЭСК-10601/7(К80.7)			
Электрод стеклянный комбинированный ЭСК-10601/4(К80.7)	OOO WHOMODYTOW WOO		
Электрод стеклянный комбинированный ЭСК-10303/7(К80.7)	OOO «Измерительная техника», г. Москва		
Электрод редоксметрический платиновый комбинированный	техника», т. wioeква		
ЭРП-105(К80.7)			
Электрод стеклянный комбинированный лабораторный ЭСКЛ-08М	ОАО «Гомельский завод		
Электрод стеклянный комбинированный лабораторный	измерительных приборов»,		
ЭСКЛ-08М.1	г. Гомель, РБ		
Комбинированный рН-электрод с гелевым заполнением,	JUMO GmbH & CO,		
тип 201020/51-18-04-22-120/837	Fulda Germany		

pH-метры позволяют фиксировать результаты измерений в электронном блокноте и осуществляют обмен информацией с персональным компьютером через порт USB по протоколу ModBus ASCII.

Электрическое питание рН-метров осуществляется от двух гальванических элементов (AA) или двух аккумуляторных батарей (AA).

Общий вид рН-метра МАРК-903 и его составных частей показан на рисунке 1.

Схема пломбирования от несанкционированного доступа к элементам конструкции, обозначение места нанесения знака поверки представлены на рисунке 2.

Рисунок 1 - Общий вид рН-метра МАРК-903

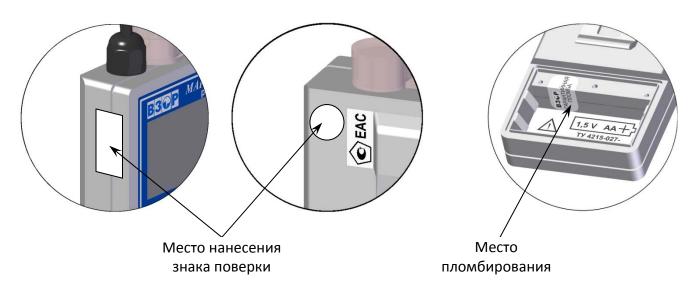


Рисунок 2 - Схема пломбирования блока преобразовательного от несанкционированного доступа к элементам конструкции (наклейка изготовителя), обозначение места нанесения знака поверки

Программное обеспечение

рН-метры функционируют под управлением микроконтроллера, который использует встроенное программное обеспечение (ПО), позволяющее управлять прибором и процессом измерений, осуществлять обмен информацией через порт USB по протоколу ModBus ASCII.

Запись метрологически значимого программного компонента производится в процессе изготовления рН-метров с помощью специальных программных средств. Конструкция рН-метров исключает возможность несанкционированного воздействия на программные компоненты и измерительную информацию в процессе эксплуатации.

Уровень защиты программного обеспечения «высокий» в соответствии с Р 50.2.077-2014.

Таблица 2 - Идентификационные данные программного обеспечения

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	MAPK-903
Номер версии (идентификационный номер) ПО	не ниже v06.00
Цифровой идентификатор ПО	40028
Алгоритм вычисления контрольной суммы исполняемого кода	CRC-16

Метрологические и технические характеристики

Таблица 3 - Метрологические характеристики

Наименование характеристики	Значение
Диапазон измерений рН-метра:	<u> </u>
– pH при температуре анализируемой среды от +24,8 до +25,2 °C, pH	от 0 до 14
– температуры анализируемой среды, °С	от 0 до +100
Пределы допускаемой основной абсолютной погрешности рН-метра	, ,
при измерении:	
– pH при температуре анализируемой среды от +24,8 до +25,2 °C, pH	± 0.05
– температуры анализируемой среды, °C	±0,3
Пределы допускаемой дополнительной абсолютной погрешности	,
рН-метра, вызванной изменением:	
а) температуры анализируемой среды в диапазоне температурной	
компенсации рН-метра при измерении рН (погрешность температурной	
компенсации рН-метра), рН:	
– с электродами ЭСК-10601/7, ЭСК-10601/4, ЭСКЛ-08M,	
ЭСКЛ-08М.1, 201020/51-18-04-22-120/837	±0,1
– с электродом ЭСК-10303/7(К80.7)/электродами с диапазоном	ŕ
измерений до 14 pH на каждые ±20 °C от нормальной от +24,8	
до +25,2 °C	±0,1
б) температуры окружающего воздуха на каждые ±10 °C	·,·
от нормальной в диапазоне рабочих температур при измерении	
температуры анализируемой среды, °С	±0,1
Диапазон показаний преобразователя при измерении рН	от 0 до 15
Диапазон измерений преобразователя при измерении:	, ,
-pH	от 0 до 14
– ЭДС (ОВП), мВ	от -1000 до +1000
Пределы допускаемой основной абсолютной погрешности	
преобразователя при измерении:	
– pH	± 0.02
– ЭДС (ОВП), мВ	±0,50
Пределы допускаемой погрешности температурной компенсации	
преобразователя при измерении pH в диапазоне от 0 до +95 °C, pH	± 0.02
Пределы допускаемой дополнительной абсолютной погрешности	
преобразователя, вызванной:	
a) изменением температуры окружающего воздуха, на каждые ±10 °C	
от нормальной в диапазоне рабочих температур при измерении:	
– pH	$\pm 0,005$
– ЭДС (ОВП), мВ	$\pm 0,3$
б) влиянием сопротивления в цепи измерительного электрода на каждые	
500 МОм в диапазоне изменения от 0 до 1000 МОм при измерении ЭДС,	
мВ	±0,5

Продолжение таблицы 3

Наименование характеристики	Значение
Время установления выходных сигналов (показаний):	
– рН-метра, мин, не более	5
– преобразователя, с, не более	10
Характеристики электродов:	
а) крутизна водородной характеристики электродной системы в ее	
линейной части при температуре +20 °C, мВ/рН, не менее	-52,2
б) координаты изопотенциальной точки электродной системы:	
– pH	от 3,97 до 4,03
	от 6,4 до 7,0
	от 6,7 до 7,3
– мВ	от -30 до +30
	от -12 до +48
	от -45 до +45
Нормальные условия измерений:	
– температура окружающего воздуха, °С	от +15 до +25
– относительная влажность, %, не более	80
– атмосферное давление, кПа	от 84,0 до 106,7

Таблица 4 - Основные технические характеристики

Габлица 4 - Основные технические характеристики	T
Наименование характеристики	Значение
Параметры электрического питания рН-метра:	
диапазон напряжения питания постоянного тока, В	от 2,2 до 3,4
Потребляемая мощность рН-метра при номинальном напряжении питания	
3,0 В, мВт, не более:	
– без подсветки индикатора	20
– с подсветкой индикатора	300
Габаритные размеры основных узлов рН-метра, мм, не более:	
а) блок преобразовательный (без датчика температуры)	
– высота	140
– ширина	28
– длина	65
б) датчик температуры (без кабеля)	
– диаметр	Ø11
– длина	160
в) электрод стеклянный комбинированный ЭСК-10601/7(К80.7)	
– диаметр	Ø12
– длина	170
г) электрод стеклянный комбинированный ЭСК-10601/4(К80.7)	
– диаметр	Ø12
– длина	170
д) электрод стеклянный комбинированный ЭСК-10303/7(К80.7)	
– диаметр	Ø12
– длина	165
е) электрод стеклянный комбинированный лабораторный ЭСКЛ-08М	
– диаметр	Ø20
– длина	175
ж) электрод стеклянный комбинированный лабораторный ЭСКЛ-08М.1	
-диаметр	Ø20
– длина	175
P	1 2/6

Продолжение таблицы 4

Наименование характеристики	Значение
з) комбинированный рН-электрод с гелевым заполнением,	
тип 201020/51-18-04-22-120/837	
–диаметр	Ø12
– длина	170
Масса основных узлов рН-метра, кг, не более:	
– блок преобразовательный (без датчика температуры)	0,12
– датчик температуры (без кабеля)	0,05
– электрод стеклянный комбинированный ЭСК-10601/7(К80.7)	0,10
– электрод стеклянный комбинированный ЭСК-10601/4(К80.7)	0,10
– электрод стеклянный комбинированный ЭСК-10303/7(К80.7)	0,12
– электрод стеклянный комбинированный лабораторный ЭСКЛ-08М	0,10
– электрод стеклянный комбинированный лабораторный ЭСКЛ-08М.1	0,10
 комбинированный рН-электрод с гелевым заполнением, 	0,05
тип 201020/51-18-04-22-120/837	Í
Средняя наработка на отказ (за исключением электрода), ч, не менее	20000
Средний срок службы рН-метров (с учетом замены электрода), лет, не менее	10
Рабочие условия эксплуатации:	
– температура окружающего воздуха, °С	от +5 до +50
относительная влажность окружающего воздуха при температуре +35 °C	
и более низких температурах без конденсации влаги, %, не более	80
– атмосферное давление, кПа (мм рт.ст.)	от 84,0 до106,7
	(от 630 до 800)
Параметры анализируемой среды (водных растворов).	
Диапазон температур при измерении рН и диапазон температурной	
компенсации рН-метра совпадают с рабочим диапазоном рН-электрода, °С:	
– электрод стеклянный комбинированный ЭСК-10601/7(К80.7)	от +5 до +95
– электрод стеклянный комбинированный ЭСК-10601/4(К80.7)	01 + 5 до + 93
– электрод стеклянный комбинированный ЭСК-10303/7(К80.7)	от +20 до +95
– электрод стеклянный комбинированный лабораторный ЭСКЛ-08М	от +5 до +50
– электрод стеклянный комбинированный лабораторный ЭСКЛ-08М.1	01 +3 до +30
– комбинированный рН-электрод с гелевым заполнением,	от +5 до +80
тип 201020/51-18-04-22-120/837	01 го до гоо

Знак утверждения типа

наносится с внешней стороны на заднюю панель блока преобразовательного методом наклейки, на титульный лист руководства по эксплуатации и паспорт типографским способом.

Комплектность средства измерений

Таблица 5 - Комплектность рН-метра

Наименование	Обозначение	Количество, шт.
Блок преобразовательный с датчиком температуры	BP48.01.000	1
Комбинированный рН-электрод	-	1
Кабель датчика ¹⁾	BP31.22.200	1
Комплект инструмента и принадлежностей	BP48.06.000	1
Руководство по эксплуатации	ВР48.00.000РЭ	1
Паспорт	ВР48.00.000ПС	1
	D1 40.00.00011C	1

¹⁾ Поставляется с комбинированным pH-электродом типа 201020/51-18-04-22-120/837.

Поверка

осуществляется по документу BP48.00.000РЭ «рН-метр MAPK-903. Методика поверки» (Приложение A), утвержденному ФБУ «Нижегородский ЦСМ» 20.12.2017 г.

Основные средства поверки:

- буферные растворы рабочие эталоны рН 2-го разряда по ГОСТ 8.120-2014, приготовленные из стандарт-титров по ГОСТ 8.135-2004 (стандарт-титры для приготовления буферных растворов рабочих эталонов рН 1-го и 2-го разрядов, рег. № 45142-10);
 - -прибор для поверки вольтметров, дифференциальный вольтметр В1-12 (рег. № 6013-77);
 - термометр лабораторный электронный ЛТ-300 (рег. № 61806-15).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых рН-метров с требуемой точностью.

Знак поверки наносится на свидетельство о поверке и (или) паспорт, и на блок преобразовательный.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к рH-метрам MAPK-903

ГОСТ 27987-88 Анализаторы жидкости потенциометрические ГСП. Общие технические условия.

ГОСТ 8.120-2014 ГСИ. Государственная поверочная схема для средств измерений рН. Р 50.2.036-2004 ГСИ. рН-метры и иономеры. Методика поверки.

ТУ 4215-027-39232169-2007 рН-метр МАРК-903. Технические условия.

Изготовитель

Общество с ограниченной ответственностью «ВЗОР» (ООО «ВЗОР»)

ИНН 5261003830

Адрес: 603003, г. Нижний Новгород, ул. Заводской парк, д. 33, пом. 2

Телефон (факс): (831) 229-65-50

Web-сайт: www.vzornn.ru; E-mail: market@vzor.nnov.ru

Испытательный центр

Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в Нижегородской области»

(ФБУ «Нижегородский ЦСМ»)

Адрес: 603950, г. Нижний Новгород, ул. Республиканская, д. 1

Телефон (факс): (831) 428-78-78, (831) 428-57-95 Web-сайт: www.nncsm.ru; E-mail: mail@nncsm.ru

Аттестат аккредитации ФБУ «Нижегородский ЦСМ» по проведению испытаний средств измерений в целях утверждения типа № 30011-13 от 27.11.2013 г.

Заместитель			
Руководителя Федерального			
агентства по техническому			
регулированию и метрологии			С.С. Голубев
	3.6		2010
	М.п.	‹ 〈	2018 i